
Online Appendix to “Testing for Racial Bias in Police

Traffic Searches”

Joshua Shea

July 5, 2023

A Constraints in the bilinear programming problem

This section provides some examples of how to impose linear constraints in the bilinear

program. This section also provides a numerical example motivating the monotonicity re-

striction (13) on the distributions of risk.

A.1 Imposing linear constraints

Consider the vector of variables x = (x1, . . . , xK)
′. The monotonicity constraint

x1 ≤ x2 ≤ · · · ≤ xK (A.1)

may be written as 
1 −1 0 . . . 0 0

0 1 −1 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 1 −1

x ≤


0

0
...

0

 .

To reverse the direction of monotonicity, simply reverse the inequalities. Linear constraints

of the form

K∑
k=1

akxk ≤ b
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may be written as

a′x ≤ b, (A.2)

where a = (a0, . . . , aK)
′.

To ensure that the search probabilities σσσr = (σ(g0; r), . . . , σ(gK ; r)) that are being op-

timized over are consistent with being a CDF of Ti | Ri = r for r ∈ {w,m}, σσσr must be

non-decreasing in index k, and each element must be in the unit interval. The non-decreasing

property of σσσr takes the form of (A.1), and the bounds on each element of σσσr take the form

of (A.2) (i.e., choose a to be a standard basis vector).

To ensure that each distribution of risk pr,z is consistent with being a PMF, the elements

of pr,z must be in the unit interval and sum to 1. Both of these constraints take the form

of (A.2). The researcher may also choose to impose monotonicity constraints on pr,z. These

will take the form of (A.1).

If the researcher has a prior on how the average risk ranks across Ri and Zi, the re-

searcher can impose the ranking using linear constraints. To see how, write the average risk

conditional on race and setting as

E[Guilty i | Ri = r, Zi = z] =
K∑
k=1

gkpr,z,k

= g′pr,z,

where g = (g0, . . . , gK)
′ is the vector of discretized risks. Then the ranking

E[Guilty i | Ri = r1, Zi = z1] ≤ E[Guilty i | Ri = r2, Zi = z2]

takes the form

K∑
k=1

gkpr1,z1,k ≤
K∑
k=1

gkpr2,z2,k

⇐⇒
K∑
k=1

gkpr1,z1,k −
K∑
k=1

gkpr2,z2,k ≤ 0

⇐⇒ g′(pr1,z1 − pr2,z2) ≤ 0.

This restriction has the same form as (A.2), with a = g and x = pr1,z1 − pr2,z2 .
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A.2 Imposing integrality constraints

The BP framework nests earlier models in the literature where Search i = 1{Gi ≥ t(Ri)} for

some deterministic function t. These models effectively impose an integrality constraint on

σσσr so that

σ(gk; r) ∈ {0, 1} for k = 1, . . . K. (A.3)

Under such a restriction, the BP program becomes a mixed integer program, which can also

be solved to provable global optimality.

A.3 Motivating restrictions on the distribution of risk

In this section, I provide an example for how the PDF of risk for drivers stopped may be

decreasing in risk, even though the officer may be more likely to stop drivers with higher

risk.

Consider the following model for traffic stops. Let Stopi ∈ {0, 1} denote the stop decision

of an officer for driver i. Data is only available for drivers who are stopped, for whom

Stopi = 1. Let Up
P,i(Ri) denote the random utility of stop decision p for driver i, and

U s
S,i(Guilty i;Ri) denote the random utility of searching driver i. The search utilities {US,i}

are defined as in the main paper, except I have included the additional “S” subscript to

distinguish them from the utilities from stopping a driver, {UP,i}.
Prior to stopping the driver, the officer observes Ri, Zi, and V Pre

i , where V Pre
i is a sub-

vector of Vi ≡ (V Pre′

i , V Post′

i )′. The vector V Pre
i contains variables that the officer observes

without having to make a stop, such as the make of the vehicle and the speed it was trav-

eling at. The vector V Post
i includes variables that the officer only observes after stopping

and interacting with the driver, such as the demeanor of the driver and the smell from the

vehicle’s interior. As in the main paper, the researcher does not observe Vi. The officer also

knows the stop utilities {UP,i} before stopping the driver, similar to how he knows {US,i}
before searching the driver.

The officers bases his stop decision on the expected utility from stopping and not stopping

a driver. This expectation accounts for the probability that the driver is searched if stopped,
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and the probability the driver is guilty. The officer’s stop decision may be expressed as

Stopi ≡ argmax
p∈{0,1}

1{p = 1}
(
U1
P,i(Ri) + E[USearchi

S,i (Guilty i;Ri) | Ri, Zi, V
Pre
i ]

)
+ 1{p = 0}U0

P,i(Ri)

= 1
{
U1
P,i(Ri) + E[USearchi

S,i (Guilty i;Ri) | Ri, Zi, V
Pre
i ] ≥ U0

P,i(Ri)
}

= 1
{
E[USearchi

S,i (Guilty i;Ri) | Ri, Zi, V
Pre
i ] ≥ T Stop

i

}
,

where T Stop
i ≡ U0

P,i(Ri)− U1
P,i(Ri) is a random utility threshold. To distinguish between the

thresholds for stop and search decisions, let T Search
i denote the threshold for searches.

Assumption A1. {UP,i} ⊥⊥ ({US,i}, Zi, V
Pre
i ) | Ri.

Corollary A1. T Stop
i ⊥⊥ (T Search

i , Zi, V
Pre
i ) | Ri.

The independence between {UP,i} and (Zi, V
Pre
i ) is not required and is imposed to simplify

the model. The independence between {UP,i} and {US,i} is required for Assumption 1(ii)–

1(iii) in the main paper to hold. To see why, suppose the stop and search preferences are

correlated and let V Post
i contain {UP,i}. Then Assumption 1(iii) is immediately violated.

Assumption 1(ii) is also violated since the officer’s draws of {US,i} may differ for drivers i and

j of race r with U1
P,i(r) ̸= U1

P,j(r). However, Assumption A1 does not rule out a relationship

between the stop and search preferences of officers. For example, officers whose distributions

of T Stop
i have a small mean (i.e., eager to stop on average) may also have distributions of

T Search
i with a small mean (i.e., eager to search on average).

To see there is a relationship between the driver’s risk and the probability of being

stopped, note that

P{Stopi = 1 | Ri = r, Zi = z, V Pre
i = v}

= P{E[USearchi
S,i (Guilty i;Ri) | Ri, Zi, V

Pre
i ] ≥ T Stop

i | Ri = r, Zi = z, V Pre
i = v}

= FTStop |R(E[USearchi
S,i (Guilty i;Ri) | Ri = r, Zi = z, V Pre

i = v] | r),

where the last equality follows from Corollary A1. Apply the law of iterated expectations to

the expectation inside of the CDF,

E[USearchi
S,i (Guilty i;Ri) | Ri = r, Zi = z, V Pre

i = v]

=
∑
s=0,1

E[U s
S,i(Guilty i;Ri) | Search i = s, Ri = r, Zi = z, V Pre

i = v] ×

P{Search i = s | Ri = r, Zi = z, V Pre
i = v}.
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Consider the terms in the summand when s = 1. Applying the law of iterated expectations

again, I have

E[U1
S,i(Guilty i;Ri) | Searchi = 1, Ri = r, Zi = z, V Pre

i = v]

= E[E[U1
S,i(Guilty i;Ri) | Searchi = 1, Ri = r, Zi = z, Vi] | Searchi = 1, Ri = r, Zi = z, V Pre

i = v]

= E

E
U1

S,i(Guilty i;Ri)

∣∣∣∣G(r, z, Vi︸ ︷︷ ︸
Risk

) ≥ T Search
i , Ri = r, Zi = z, Vi

∣∣∣∣∣∣ Searchi = 1, Ri = r,

Zi = z, V Pre
i = v


and

P{Search i = 1 | Ri = r, Zi = z, V Pre
i = v}

= E[P{Search i = 1 | Ri = r, Zi = z, Vi} | Ri = r, Zi = z, V Pre
i = v]

= E[FTSearch |R(G(r, z, Vi)︸ ︷︷ ︸
Risk

| r) | Ri = r, Zi = z, V Pre
i = v],

where the last equality follows from the model in Section 3 of the main paper.

Suppose that P{Stopi = 1 | Ri = r, Zi = z} and G(Ri, Zi, Vi) have a positive relationship

for some (r, z) ∈ {w,m} ×Z, as shown in the top panel of Figure B.1. The officer has a 1%

probability of stopping a driver with zero risk, and this probability monotonicically increase

to 50% probability as risk increases to unity. Denote this relationship by by πr,z,

πr,z(g) ≡ P{Stopi = 1 | Ri = r, Zi = z,Gi = g}.

Suppose also that the population distribution of risk unconditional on being stopped is as

shown in the middle panel of Figure B.1, and is equal to a beta distribution with shape

parameters 1 and 9 and a mean of 0.1, i.e., 10% of drivers carry contraband. Redefine

fG|R,Z(· | r, z) to be the density of risk unconditional on being stopped. Then the distribution

of risk conditional on being stopped may be calculated by

fG|Stop,R,Z(g | 1, r, z) =
πr,z(g) fG|R,Z(g | r, z)∫ 1

0
πr,z(g′) fG|R,Z(g′ | r, z) dg′

,

and is shown in the bottom panel of Figure B.1. Despite the officer’s preference for stopping

high-risk drivers, the proportion of low-risk drivers in population is sufficiently large such

that the density of risk post-stop is strictly decreasing.
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Figure B.1: Monotone-decreasing density for risk of drivers stopped
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B Modeling continuous risk using B-splines

In this section, I show how to adapt the methodology to allow for continuous distributions

of risk.

Recall that the search and (unconditional) hit rates may be written as

P{Search i = 1 | Ri = r, Zi = z} =

∫ 1

0

σ(g; r) dFG|R,Z(g | r, z), (B.4)

P{Hit i = 1 | Ri = r, Zi = z} =

∫ 1

0

g σ(g; r) dFG|R,Z(g | r, z). (B.5)

Suppose there exists a density function fG|R,Z(· | r, z) for (r, z) ∈ {w,m} × Z. Suppose also

that σ(g; r) and fG|R,Z can be modeled using B-splines. Then (B.4)–(B.5) can be written as

bilinear terms

P{Search i = 1 | Ri = r, Zi = z} = σσσ′
rQSpr,z, (B.6)

P{Hit i = 1 | Ri = r, Zi = z} = σσσ′
rQHpr,z, (B.7)

where {σσσr}, {pr,z} are sets of parameters characterizing the officer’s search preferences and

the distributions of risk, respectively; and QS and QH are known matrices. Equations (B.6)–

(B.7) follow from the fact that products of B-splines are also B-splines. Mørken (1991)

provides the formula for calculating the coefficients for the products of two B-splines. To

state this formula, it is necessary to first define several terms.

Following the notation in Mørken (1991), let k be a positive integer denoting the order

of a spline, and τττ = (τ1, τ2, . . . ) be a non-decreasing sequence of real numbers denoting the

knots of the spline. Then the B-spline Bi,k,τττ is defined using the recurrence relation

Bi,k,τττ (x) ≡ ωi,k,τττ (x)Bi,k−1,τττ (x) + (1− ωi+1,k,τττ (x))Bi+1,k−1(x),

where

ωi,k,τττ (x) ≡


(x−τi)

τi+k−1−τi
if τi < τi+k−1,

0 otherwise,
(B.8)

and

Bi,1,τττ (x) ≡

1 if τi ≤ x < τi+1

0 otherwise.
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Let Sk,τττ denote the linear space spanned by the splines {Bi,k,τττ}.
Let τττ ′ be a subsequence of τττ . Then Sk,τττ ′ ⊆ Sk,τττ , and the B-splines {Bj,k,τττ ′} are linear

combinations of the B-splines {Bi,k,τττ} and can be written as

Bj,k,τττ ′ =
∑
i

αj,k,τττ ′,τττ (i)Bi,k,τττ .

The coefficients {αj,k,τττ ′,τττ} are discrete B-spline of order k on τττ with knots τττ ′ and satisfy the

recurrence relation

αj,k,τττ ′,τττ (i) = ωj,k,τττ ′(τi+k−1)αj,k−1(i) + (1− ωj+1,k,τττ ′(τi+k−1))αj+1,k−1(i),

where ωj,k,τττ ′ is defined as in (B.8), and αj,1,τττ ′,τττ (i) = Bj,1,τττ ′(τi).

Suppose we have two splines, f1 ∈ Sk1,τττ1 and f2 ∈ Sk2,τττ2 . Let Sk,τττ denote the spline space

containing the product of f1 and f2. The order of this spline space is k = k1 + k2 − 1. The

knots of this spline space τττ contains all the distinct knots in τττ 1 and τττ 2, with the multiplicity

of the knots being determined as follows. For each knot τ in τττ , let m1 denote the multiplicity

of τ in τττ 1 and m2 denote the multiplicity of τ in τττ 2. Then the multiplicity of τ in τττ is

m̂ =



max(k1 − 1 +m2, k2 − 1 +m1) if m1 > 0 and m2 > 0,

k1 − 1 +m2 if m1 = 0 and m2 > 0,

k2 − 1 +m1 if m1 > 0 and m2 = 0,

0 if m1 = 0 and m2 = 0.

(B.9)

Finally, let P = {p1, . . . pk1−1} be a set of k1 − 1 integers from Ik−1 = {1, . . . , k− 1}. Let
Q = Ik−1 \P = (q1, . . . , qk2−1) be the set of the remaining k2−1 integers. For a given integer

i, define the knot vectors τττP and τττQ by

τττP = (. . . , τi−1, τi, τi+p1 , τi+p2 , . . . , τi+pk1−1
, τi+k, τi+k+1, . . . ), (B.10)

τττQ = (. . . , τi−1, τi, τi+q1 , τi+q2 , . . . , τi+qk2−1
, τi+k, τi+k+1, . . . ). (B.11)

Let Π denote the set of all subsets of Ik−1 consisting of k1 − 1 elements.

Theorem 1. (Theorem 3.1 of Mørken (1991)) Let f1 =
∑

j1
c1,j1Bj1,k1,τττ1 and f2 =∑

j2
c2,j2Bj2,k2,τττ2 be two given spline functions. Set k = k1 + k2 − 1 and construct the knot

vector τττ according to (B.9). Then f1f2 ∈ Sk,τττ so that there exists coefficients d1, d2, . . .

such that f1(x)f2(x) =
∑

i diBi,k,τ (x). Specifically, for a given i, the knot vectors τττP and τττQ

8



defined by (B.10)–(B.11) satisfy τττ 1 ⊆ τττP and τττ 2 ⊆ τττQ, and di is given by

di =
∑
P∈Π

∑
j1

∑
j2

c1,j1αj1,k1,τττ1,τττP (i)c2,j2αj2,k2,τττ2,τττQ(i)

/(
k − 1

k1 − 1

)
.

It follows from Theorem 1 that the integral of f1f2 can be written as a bilinear term,∫
f1(x)f2(x) dx =

∑
j1

∑
j2

c1,j1c2,j2vj1,j2 ,

where

vj1,j2 =
∑
i

∑
P∈Π

αj1,k1,τττ1,τττP (i)αj2,k2,τττ2,τττQ(i)

∫
Bi,k,τττ (x) dx

/(
k − 1

k1 − 1

)

can be calculated. Equation (B.6) follows from letting f1 be the search preference σ(·; r),
and letting f2 be the density of risk fG|R,Z(· | r, z). Equation (B.7) follows from the same

reasoning, except f1 is the search preference scaled by risk, gσ(g; r).1

Shape restrictions on σ and fG|R,Z(· | r, z) may be imposed through an auditing pro-

cedure (Shea and Torgovitsky, 2023). This procedure consists of first imposing the shape

constraints on a coarse constraint grid over the domains of σ(·; r) and fG|R,Z(· | r, z). The

BP problems is then solved. Whether the solutions for σ(·; r) and fG|R,Z(· | r, z) satisy the

shape constaints is then checked on a much finer audit grid. Points in the audit grid where

the shape constraints are violated are added to the constraint grid, and the BP problem is

solved again. This procees is repeated until the shape constraints are satisfied on all points

of the audit grid. This procedure avoids the computational and mathematical difficulties

of determining whether the B-splines satisfy properties such as monotonicity, boundedness,

and convexity (De Boor, 2001).

1If σ(g; r) is a B-spline, then gσ(g; r) will also be a B-spline.
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C Estimates for biased officers

C.1 Estimates when averaging search and hit rates over Xi | Ri = w

Figure C.2: Officer 8

(a) Data
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(b) Estimated bounds on bias
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Note: The size of the dots in the left panel represents the number of stops at each setting. The
dashed lines in the right panel indicate the bounds on the average bias. If white drivers were
treated as minority drivers, holding their risk constant, they would be searched between 7.50 and
7.53 percentage points more on average. If minority drivers were treated as white drivers, holding
their risk constant, they would be searched between 7.36 and 7.46 percentage points less on average.
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Figure C.3: Officer 23
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(b) Estimated bounds on bias
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Note: The size of the dots in the left panel represents the number of stops at each setting. The
dashed lines in the right panel indicate the bounds on the average bias. If white drivers were treated
as minority drivers, holding their risk constant, they would be searched between 8.85 and 58.54
percentage points more on average. If minority drivers were treated as white drivers, holding their
risk constant, they would be searched between 9.87 and 14.39 percentage points less on average.

Figure C.4: Officer 35
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Note: The size of the dots in the left panel represents the number of stops at each setting. The
dashed lines in the right panel indicate the bounds on the average bias. If white drivers were
treated as minority drivers, holding their risk constant, they would be searched between 1.11 and
1.14 percentage points more on average. If minority drivers were treated as white drivers, holding
their risk constant, they would be searched between 1.07 and 1.13 percentage points less on average.
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Figure C.5: Officer 41

(a) Data
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(b) Estimated bounds on bias
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Note: The size of the dots in the left panel represents the number of stops at each setting. The
dashed lines in the right panel indicate the bounds on the average bias. If white drivers were treated
as minority drivers, holding their risk constant, they would be searched between 3.34 percentage
points less and 34.49 percentage points more on average. If minority drivers were treated as white
drivers, holding their risk constant, they would be searched between 11.82 percentage points less
and 8.28 percentage points more on average.
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C.2 Estimates when averaging search and hit rates over Xi | Ri =

m

Figure C.6: Officer 8

(a) Data
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(b) Estimated bounds on bias
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Note: The size of the dots in the left panel represents the number of stops at each setting. The
dashed lines in the right panel indicate the bounds on the average bias. If white drivers were
treated as minority drivers, holding their risk constant, they would be searched between 8.37 amd
8.42 percentage points more on average. If minority drivers were treated as white drivers, holding
their risk constant, they would be searched between 8.21 and 8.35 percentage points less on average.

Figure C.7: Officer 20
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(b) Estimated bounds on bias
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Note: The size of the dots in the left panel represents the number of stops at each setting. The
dashed lines in the right panel indicate the bounds on the average bias. If white drivers were treated
as minority drivers, holding their risk constant, they would be searched between 9.22 and 12.91
percentage points less on average. If minority drivers were treated as white drivers, holding their
risk constant, they would be searched between 17.26 and 74.75 percentage points more on average.
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Figure C.8: Officer 35

(a) Data

0.00

0.01

0.0 0.1 0.2 0.3 0.4

Search rate by Ri, Zi

H
it
ra
te

b
y
R

i,
Z

i

(b) Estimated bounds on bias
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Note: The size of the dots in the left panel represents the number of stops at each setting. The
dashed lines in the right panel indicate the bounds on the average bias. If white drivers were
treated as minority drivers, holding their risk constant, they would be searched between 1.33 and
1.34 percentage points more on average. If minority drivers were treated as white drivers, holding
their risk constant, they would be searched between 1.31 and 1.34 percentage points less on average.

Figure C.9: Officer 43
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Note: The size of the dots in the left panel represents the number of stops at each setting. The
dashed lines in the right panel indicate the bounds on the average bias. If white drivers were
treated as minority drivers, holding their risk constant, they would be searched between 1.90 and
1.91 percentage points more on average If minority drivers were treated as white drivers, holding
their risk constant, they would be searched between 1.90 and 1.99 percentage points less on average.
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