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Abstract

I develop a framework to detect and measure bias amid sample selection and statistical

discrimination, and apply this framework to study racial bias in police traffic searches.

I model the search decision with a threshold model and allow the threshold to be

random. This allows the direction and intensity of bias to depend on the officer’s belief

of the probability that a driver carries contraband. This framework also allows me

to evaluate each officer separately, thereby allowing for unrestricted heterogeneity in

officer search preferences and beliefs. Sharp bounds on various measures of bias can

be derived using bilinear programs. I use this framework to evaluate 50 officers in the

Metropolitan Nashville Police Department and find 6 officers to be biased. For each of

these officers, I construct sharp bounds on how search rates for minority drivers would

change if they were treated as white drivers, and vice versa. The estimates suggest the

intensity of bias depends on the officer’s belief of the probability that a driver carries

contraband.
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1 Introduction

Disparities across race, sex, and other protected classes arise in many settings, including

the labor market (Card et al., 2016; Agan and Starr, 2018; Kline et al., 2022), the criminal

justice system (Arnold et al., 2018; Feigenberg and Miller, 2022), healthcare (Obermeyer

et al., 2019; Wasserman, 2023), credit attribution (Sarsons et al., 2021; Ductor et al., 2021;

Onuchic and Ray, 2023), and lending markets (Bhutta and Hizmo, 2021; Bartlett et al.,

2022). However, due to possible unobserved confounders, it is often difficult to determine

whether the disparities are a result of bias against particular groups of individuals, or measure

the extent to which bias contributes to the disparities.

In this paper, I develop a framework to test for and measure bias, and I apply this frame-

work to study racial bias in police traffic searches. Under this framework and setting, officers

have preferences for searching white and minority drivers who are stopped. These prefer-

ences govern an economic choice model for searching drivers that depends on the officer’s

belief of the probability that a driver carries contraband (e.g., drugs or weapons). Although

I do not observe these beliefs, I am able to make sharp inferences on how the officer’s search

decisions depend on his beliefs. This is achieved using a partial identification approach. This

approach also allows restrictions on the officer’s preferences and the probability that drivers

carry contraband to be layered in a flexible and transparent manner. The econometric meth-

ods do not require officers to be randomly assigned to drivers and may be used to evaluate

each officer separately. The methods can also be applied to study discrimination in other

settings, such as the labor market and healthcare.

The test for bias checks whether the sharp identified set for the officer’s search preferences

(i.e., the smallest set of preferences consistent with the model and data) includes an equiv-

alent pair of preferences for white and minority drivers. If not, then the officer’s preferences

must differ by race, implying he is biased. The intensity of bias may then be inferred from

how dissimilar white and minority search preferences are. The partial identification approach

permits the test to be valid even when officers have different beliefs about the probability

that white and minority drivers carry contraband, which can occur for several reasons, in-

cluding sample selection and statistical discrimination. Implementing this approach entails

solving bilinear programs, a type of non-convex problem that can be solved to provable global

optimality. Bilinear programs are not only novel in the context of discrimination, but also

in the context of partial identification and econometrics in general.

A distinguishing feature of the test is how I model an officer’s search decision. Similar

to earlier papers, the officer is modeled to search drivers only if their probability of carrying

contraband (“risk”) exceeds a threshold, where the threshold represents the officer’s search
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preference. However, whereas recent papers have required or assumed fixed thresholds (see

Canay et al. (2020a,b, 2022) and Hull (2021) for a discussion on this restriction), I use a

random threshold. Consequently, there is no longer a single driver at the margin of search,

but a “marginal driver” at every level of risk. This means a biased officer is not restricted to

searching all drivers of one race with a given level of risk, while searching none of the equally

risky drivers of the other race, as implied by a fixed threshold. Instead, the officer can search

both groups of drivers at different intensities, e.g., whites with 10% risk are searched 20% of

the time, whereas equally risky minorities are searched 40% of the time. Officers can even

change direction of bias depending on the level of risk, e.g., whites with 10% risk are half

as likely to be searched compared to equally risky minorities, but whites with 20% risk are

twice as likely to be searched compared to equally risky minorities. The random threshold

therefore permits a richer analysis of racial bias, where the direction and intensity of bias

may depend on unobserved (to the researcher) characteristics of the driver. Moreover, the

methods proposed allow me to learn about this dependence.

Identification is aided by an instrumental variable (IV) that shifts the distribution of risk

among drivers stopped without shifting the officer’s preferences. For each race of drivers, this

generates a sequence of data points that must be consistent with a single preference, thereby

constraining what the officer’s preferences can be. This is similar to how an IV is used in

demand estimation, where the instrument shifts supply without shifting demand, generating

a sequence of equilibria tracing out the demand curve. Since it is possible to vary the risk of

drivers stopped for each officer separately, it is possible to apply the proposed methods on

each officer separately, thus permitting unrestricted heterogeneity across officers.

I apply the methods on a panel data set tracking officers in the Metropolitan Nashville

Police Department (MNPD) between 2010 and 2019. I restrict my attention to the 50

officers with the most number of searches, who have made over 2,100 stops and 250 searches

on average for each group of drivers. Across two sets of estimates, there are six officers who

fail the test at the 5% significance level. For each of these officers, I estimate the average

intensity of bias, as well as how the intensity of bias varies with the risk of the driver.

The paper proceeds as follows. Section 2 reviews the literature on testing for racial bias;

Section 3 presents the model of an individual officer’s search decision; Section 4 formalizes

how bias may be detected and measured; Section 5 discusses the application; and Section 6

concludes.
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2 Literature review

It is well documented that Black civilians are more likely to be stopped (Gelman et al.,

2007), searched (Pierson et al., 2020), and killed by police officers than white civilians.1 It

is challenging to determine whether these disparities stem from racial bias because officers

practice discretion when making their decisions, and researchers do not know what officers

are thinking when those decisions are made. In this section, I summarize earlier approaches

to overcoming these difficulties in detecting racial bias.

Knowles et al. (2001) lay the foundation for detecting racial bias in traffic searches using

the outcome test proposed by Becker (1957, 1993). Officers are modeled as being homoge-

neous and only search drivers whose perceived risk of carrying contraband exceeds a fixed

threshold. If the thresholds differ for white and minority drivers, then officers are racially

biased. The researcher’s objective is thus to recover these thresholds. If risk is observed by

the researcher and continuously distributed over the unit interval, then the thresholds are

identified from the risk of the white and minority drivers at the margin of search.

However, because risk is unobserved, the researcher must use a different strategy. Knowles

et al. (2001) form a game-theoretic argument that drivers of the same race have the same risk

in equilibrium, placing every driver at the margin of search.2 The authors show that if officers

are unbiased, then all white and minority drivers carry contraband with equal probability.

This results in a straightforward test for bias: if officers have different success (“hit”) rates

when searching white and minority drivers, then officers are biased. However, the model’s

implication of homogeneous drivers within race, as well as its assumption of homogeneous

officers, may both be rejected using officer-level data. For instance, the variation across

MNPD officers in their hit rates reveals that drivers are not homogeneous in risk. In addition,

Ba et al. (2021) find that the rate at which officers stop, arrest, and use force against civilians

varies with the race and sex of officers.3

Anwar and Fang (2006) propose an alternative test that allows for heterogeneity in officer

decisions and driver risk. By extending the model of Knowles et al. (2001) to allow different

officers to have different thresholds, Anwar and Fang (2006) test for bias using pairwise

comparisons of search decisions across groups of officers (e.g., white officers versus Black

1Source: Fatal Force, Washington Post.
2The argument is that drivers who are more likely to carry contraband will be searched more frequently.

These drivers are therefore discouraged from carrying contraband. In equilibrium, all drivers of the same
race carry contraband with equal probability and officers search each race at random.

3From surveys conducted on officers, Morin et al. (2017) find that men are three times more likely than
women to have discharged their service weapon while on duty (30% versus 11%). White officers are also
80% more likely than Black officers to have been in an altercation with a civilian within a month prior to
the interview (36% versus 20%).
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officers). If both groups of officers are unbiased, then the ranking of their search rates

should be the same regardless of the race of the driver. While this approach can detect bias,

it cannot determine which group of officers is biased, nor which group of drivers is being

discriminated against.

Recently, Arnold et al. (2018) made an important contribution to the literature by using

random assignment of defendants to judges as an instrument to detect racial bias in bail

decisions. The authors extend the model of Anwar and Fang (2006) by allowing thresh-

olds to be distributed continuously across decision makers. Under conditions formalized by

Canay et al. (2022), the thresholds of all decision makers can be point identified using the

marginal treatment effect framework of Heckman and Vytlacil (2005). These conditions

include decision makers facing identical distributions of risk (hence the importance of ran-

dom assignment) and modeling decision makers using the Extended Roy Model (i.e., fixed

thresholds). This method is referred to as the marginal outcome test.

To see whether the marginal outcome test extends to the context of police traffic searches,

Gelbach (2021) tests three implications of the marginal outcome test framework on police

traffic data from Florida and Texas.4 The implications are not satisfied and the author points

to different distributions of risk across officers as the potential reason. Such differences can

arise if officers are not randomly assigned to drivers or vary in their ability to assess the risk

of drivers. Papers using the marginal outcome test to study bias in policing therefore require

restrictions on the distributions of risk. For example, Marx (2022) requires the distributions

of risk to be common across officers. Feigenberg and Miller (2022) allow the distributions of

risk to vary across officers, but rule out sample selection on unobservables.5 Arnold et al.

(2022) also allow decision makers to face different distributions of risk, but require parametric

assumptions on the joint distribution of thresholds and risk.6

Other papers have used statistical approaches to test whether civilian race has an effect

on police decisions, including stop-and-frisk and use of force (Ridgeway, 2006; Grogger and

Ridgeway, 2006; Gelman et al., 2007; Ridgeway and MacDonald, 2009; Goel et al., 2016a,b;

Fryer Jr, 2019; MacDonald and Fagan, 2019; Knox et al., 2020a). These papers either assume

that the distribution of risk may be balanced across races, or cannot attribute the effect of

race to racial bias. Knox et al. (2020a) is noteworthy for emphasizing the difficulty of

identifying the effect of race on post-stop decisions alone (e.g., use of force, traffic searches)

4Frandsen et al. (2023) propose a test for the exclusion and monotonicity assumptions of the marginal
outcome test in the setting where legal cases are randomly assigned to judges.

5The difference-in-differences strategy used by Goncalves and Mello (2021) to study racial bias among
officers writing speeding tickets also rules out sample selection on unobservables.

6See also Simoiu et al. (2017), Pierson et al. (2018), Pierson et al. (2020), and Chan et al. (2022), who
impose similar parametric restrictions to identify thresholds of decision makers.
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because of sample selection. The authors show that, under a principal strata framework,

this is only possible in the knife-edge scenario where the biases from sample selection and

omitted variables cancel each other out (Knox et al., 2020b; Gaebler et al., 2020).

3 Model

In this section, I model the search decision of a single officer (he) for drivers who are stopped

(she). Since the analysis allows for unrestricted heterogeneity across officers, I suppress the

officer indexes for brevity. Similar to Knowles et al. (2001) and Anwar and Fang (2006), I

also suppress the notation indicating the analysis is conditional on drivers who are stopped.

3.1 Setup and notation

For each stop i, the officer observes the driver’s race Ri ∈ {w,m} (white or minority), and a

set of non-race characteristics Vi ∈ V that may include the driver’s demeanor, the direction

of travel, and any other details the officer notices. Components of Vi may be observed by the

officer prior to the stop. Some components of Vi may also be observable to one officer but not

another. This allows officers to vary in their perceptiveness and form different beliefs about

the driver’s risk. The researcher only observes Ri but not Vi; any other characteristics of the

driver and the stop observed by the researcher are implicitly conditioned on throughout. In

Section 5, I discuss the variables being conditioned on in the application.

The driver may carry contraband (e.g., drugs, weapons), denoted by Guilty i ∈ {0, 1}.
The officer does not know whether the driver is guilty unless he performs a traffic search,

denoted by Searchi ∈ {0, 1}. At the end of each traffic stop, the officer reports in the data

whether a search was conducted and whether contraband was found. Finding contraband is

referred to as a “hit,”

Hit i ≡ Search i ×Guilty i.

I assume that the officer finds contraband if and only if he searches a guilty driver, as in

Knowles et al. (2001) and Anwar and Fang (2006).

I assume drivers are drawn from a distribution that depends on the setting of the stop,

Zi ∈ Z. For example, Zi may be the hour and day of the stop, and the interpretation of

this assumption would be that different types of drivers are stopped at different times. This

may be because the composition of drivers on the road changes with time, or because the

officer’s stop decision changes with time.7 The setting is observed by both the officer and

7If there are variables that inform the officer’s stop decision and are visible for one value of Zi but not

6



researcher, and will play the role of an instrument.

When deciding whether to search, the officer considers four possible outcomes of his

decision: (i) searching an innocent driver; (ii) searching a guilty driver; (iii) not searching

an innocent driver; and (iv) not searching a guilty driver. Associated with each outcome

is an ex post utility that the officer learns after interacting with the driver and observing

all of her characteristics, but prior to making his search decision. Let U s
i (g; r) denote this

utility when Search i = s and Guilty i = g for a driver with race Ri = r. These utilities are

random and can vary across drivers who are observationally equivalent to the officer. The

distributions of these utilities represent the officer’s search preferences, and the objective of

the test is to detect whether race has a direct effect on these distributions. To do this, I

make the following assumption about the utilities {U0
i (g; r),U1

i (g; r)}(g,r)∈{0,1}×{w,m}, which

I denote by {Ui} for brevity.

Assumption 1.

(i) U1
i (1;Ri)− U1

i (0;Ri) > 0 and U0
i (1;Ri)− U0

i (0;Ri) < 0 for all i.

(ii) {Ui} are identically distributed across stops i.

(iii) {Ui} ⊥⊥ (Zi,Guilty i, Vi) | Ri.

Assumption 1(i) states that, for all drivers, the officer prefers to make the correct decision

by searching guilty drivers and not searching innocent drivers. This implies that officers are

more likely to search drivers who have greater probability of carrying contraband.

Assumption 1(ii) states that the utilities across stops are drawn from a common distri-

bution. This allows me to pool the drivers of the same race together to infer the officer’s

preferences. Conditioning the analysis on observed variables that affect the distribution of

utilities (e.g., age and sex of the driver) helps to satisfy this assumption. If instead {Ui} and

{Ui′} were drawn from different distributions for every i ̸= i′, there would be no way to use

multiple stops to infer preferences.

Assumption 1(iii) states that the utilities {Ui} are independent of the joint distribution

of the setting Zi, the guilt of the driver Guilty i, and the unobserved driver characteristics

Vi after conditioning on the driver’s race Ri. This is the key assumption of the model and

determines how racial bias is defined and how it can be detected. I discuss Assumption 1(iii)

in detail in Section 3.3.

another (e.g., race is visible during the day before stopping a driver, but is not visible at night), then the
distribution of drivers stopped will vary with Zi even if the composition of drivers on the road do not. This
type of variation is used in the Veil of Darkness test by Grogger and Ridgeway (2006) to test whether race
affects the stop decision.
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Under Assumption 1, any dependence between the officer’s preferences and the driver’s

race can only be through race, leading to the following definition of racial bias.

Definition 1. The officer is racially biased in traffic searches if {U s
i (g;w)}(g,s)∈{0,1}2 and

{U s
i (g;m)}(g,s)∈{0,1}2 do not have the same distribution.

The objective of the test is thus to determine whether the distribution of utilities depends

on race. In Section 3.3, I provide a more nuanced definition of bias that depends on the

probability that a driver carries contraband.

3.2 Search decision

I assume that an officer seeks to maximize his utility when faced with a traffic search decision.

Since the driver’s guilt is not known to the officer, he chooses the decision that maximizes

his expected utility. For search decision s, his expected utility is

E[U s
i (Guilty i;Ri) | Ri = r, Zi = z, Vi = v]

= G(r, z, v) U s
i (1;Ri) + (1−G(r, z, v)) U s

i (0;Ri),

where

G(r, z, v) ≡ P{Guilty i = 1 | Ri = r, Zi = z, Vi = v}

is the officer’s belief of the probability that the driver caries contraband, which I refer to as

the “risk” of the driver. The officer’s search decision may then be written as

Searchi ≡ argmax
s∈{0,1}

E[Us
i (Guilty i;Ri) | Ri, Zi, Vi]

= 1 {G(Ri, Zi, Vi) ≥ Ti} , (1)

where

Ti ≡
U0
i (0;Ri)− U1

i (0;Ri)

[U1
i (1;Ri)− U1

i (0;Ri)]− [U0
i (1;Ri)− U0

i (0;Ri)]

is a random utility threshold representing the officer’s preferences. See Appendix A for the

full derivation. The officer thus searches a driver if and only if her risk is sufficiently large,

and how large that risk must be can vary across stops. The researcher observes neither

G(Ri, Zi, Vi) nor Ti.

From its definition, Ti inherits the properties of {Ui} stated in Assumption 1 and may

be used to define and detect racial bias.
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Corollary 1.

(i) Ti | Ri = r is identically distributed across stops i for r ∈ {w,m}.

(ii) Ti ⊥⊥ (Zi,Guilty i, Vi) | Ri = r for r ∈ {w,m}.

(iii) The officer is racially biased in traffic searches if Ti ̸⊥⊥ Ri.

Proof. The random threshold Ti is a deterministic function of the utilities {Ui}. Properties
(i)–(ii) of the corollary follow immediately from Assumptions 1(ii)–1(iii). Property (iii) of

the corollary follows immediately from Definition 1.

Instead of comparing the distribution of {Ui} across races to detect bias, it suffices to

compare the distribution of Ti across races.

3.3 Discussion

Whereas earlier papers assume the threshold Ti is a deterministic function of race (Knowles

et al., 2001; Anwar and Fang, 2006; Arnold et al., 2018),8 I allow Ti | Ri = r to be random. I

show below that this stochastic threshold permits a new form of heterogeneity in bias where

the severity and direction of bias can change with the risk of the driver. Nevertheless, as

discussed by Canay et al. (2022), restrictions on the distribution of Ti | Ri are required for

there to be testable implications of racial bias. In the remainder of this section, I elaborate

on the restrictions I impose on Ti | Ri before deriving the test for racial bias in Section 4.

There are two key properties of Ti | Ri that allow me to test for racial bias. The first is

the independence property Ti ⊥⊥ Vi | Ri, which follows from the independence between {Ui}
and Vi stated in Assumption 1(iii). This property is akin to the restriction separating the

Extended Roy Model from the Generalized Roy Model highlighted by Canay et al. (2022).

It is imposed in existing tests and is required to make a direct link between an officer’s

preferences and a driver’s race. The property rules out cases where, for example, the officer

is biased against facial tattoos (a driver characteristic unobserved by the researcher), which

may be more common in one race than the other. In this example, bias against facial tattoos

can be conflated with racial bias, since differences between Ti | Ri = w and Ti | Ri = m

may stem from racial disparities in the prevalence of facial tattoos rather than race itself.

However, if Ti ⊥⊥ Vi | Ri, then the unobserved characteristics Vi affect the search decision

exclusively through the risk of the driver, G(Ri, Zi, Vi). This in turn implies that omitted

variables, sample selection, and statistical discrimination—usual confounders of bias that

8A threshold that is a deterministic function of race can be obtained by assuming {Ui} are degenerate
random variables.
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operate through Vi—only affect the search decision through G(Ri, Zi, Vi). The econometric

challenge of detecting bias is thus to separately infer the distributions of Ti and G(Ri, Zi, Vi).

To elaborate on how the three confounders affect the distribution of risk, consider an

example where Vi is the condition of the vehicle, and aging vehicles are more likely to

contain contraband.

Omitted variable bias pertains to differences in the distribution of Vi across races in pop-

ulation, e.g., whites are twice as likely to drive aging vehicles than minorities in population.

So even if the officer stops drivers at random, the distribution of risk may differ across race

since the underlying determinant Vi differs across race.

Sample selection pertains to differences in the distribution of Vi across race for drivers

who are stopped, e.g., the officer may prefer to stop minority drivers in aging vehicles, so

conditional on being stopped, whites are only half as likely to be in aging vehicles than

minorities, despite how whites are twice as likely to drive aging vehicles in population.

Finally, statistical discrimination (in the sense of Aigner and Cain (1977)) pertains to

how Vi maps to risk differently for white and minority drivers, e.g., aging vehicles are corre-

lated with possessing contraband for whites but not for minorities. This notion of statistical

discrimination also extends to other officers, where different officers observe different compo-

nents of Vi (Hull, 2021; Arnold et al., 2022). For example, an experienced officer may know

to consider the direction of travel along a highway when assessing the driver’s risk (Barnes,

2004), whereas an inexperienced officer may not. Since the test may be applied to each

officer separately, I place no restrictions on how different officers infer the risk of drivers.

The second key property of Ti | Ri that allows me to test for racial bias is that Ti ⊥⊥ Zi |
Ri, which follows from the independence between {Ui} and Zi stated in Assumption 1(iii).

This property implies that Zi affects the search decision exclusively throughG(Ri, Zi, Vi), and

is akin to an exogeneity condition that allows Zi to shift the distribution of risk (by changing

the types of drivers stopped) without shifting the distribution of thresholds. Such variation

is helpful in partially identifying the distribution of Ti for each race. The intuition for this is

similar to that of using an IV to identify a demand curve, where the instrument exclusively

shifts the supply curve, generating a sequence of equilibria tracing out the demand curve.

In my setting, Zi exclusively shifts the distribution of risk, generating a sequence of search

and hit rates that constrain what the distribution of Ti can be for each race. In Section 4, I

show an example where bias can be detected even without variation in Zi. However, such a

test relies only on the variation in search decisions generated by Ri and can be weak.

Conditional on race, Zi may shift G(Ri, Zi, Vi) in two ways. The first is through shifting

the distribution of Vi, e.g., G(Ri, Zi, Vi) does not depend on Zi but Zi ̸⊥⊥ Vi | Ri. An example

of this is if Zi is the time of the traffic stop, and the time of the stop contains no information
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on whether the driver is guilty, but criminals tend to drive at night. The second way Zi

may shift risk is to have a direct effect on G(Ri, Zi, Vi), i.e., G(Ri, z1, Vi) ̸= G(Ri, z2, Vi)

for z1 ̸= z2. This reflects how the same signals can be interpreted differently depending on

the setting of the stop (Engel and Johnson, 2006; Novak and Chamlin, 2012). For example,

stopping a white driver in a predominantly white suburb may not be suspicious, whereas

stopping the same driver in a predominantly Black neighborhood may be more suspicious.

Similarly, stopping a high school student in the afternoon shortly after school has ended is

less suspicious than stopping the same student late into the night.

This instrument separates my approach from those using random assignment of deci-

sion makers as the instrument (Arnold et al., 2018, 2022). In my setting, the alternative

instrument of random assignment would require officers to be randomly assigned to drivers

and would imply that all officers share a common distribution of risk. This provides a way

for the researcher to vary the officer’s preferences without affecting the distribution of risk.

However, this alternative instrument is difficult to justify in my setting since police traffic

data are conditional on drivers who are stopped. Stopping a driver is not a random deci-

sion, and different officers may choose to stop different types of drivers, resulting in different

distributions of risk.

Another distinguishing feature of the instrument I propose is that it allows me to test

each officer separately for bias. This is because my identification strategy exploits variation

in search and hit rates, and my instrument is able to generate such variation within officer by

shifting the distribution of risk. I therefore allow unrestricted heterogeneity in both officer

preferences and how officers infer the risk of drivers.

Under Assumption 1 and decision rule (1), the probability that a driver is searched may

be written as

P{Search i = 1 | Ri = r, Zi = z, Vi = v}

= P{G(Ri, Zi, Vi) ≥ Ti | Ri = r, Zi = z, Vi = v}

= P{G(r, z, v) ≥ Ti | Ri = r, Zi = z, Vi = v}

= P{G(r, z, v) ≥ Ti | Ri = r}

= FT |R(G(r, z, v) | r),

where the third equality follows from Assumption 1(iii),9 and FT |R denotes the CDF of

random variable Ti conditional on Ri. The probability a driver is searched is therefore equal

9The independence between {Ui} and Guilty i stated in Assumption 1(iii) requires the officer to infer the
probability a driver carries contraband using only details from the traffic stop and not his utilities. This
rules out clairvoyance, where the officer infers the driver’s guilt using information beyond what is provided
by the traffic stop.
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to the probability the officer’s threshold falls below the driver’s risk. This permits a more

nuanced definition of bias.

Definition 2. The officer is racially biased at risk g ∈ [0, 1] if

β(g) ≡ FT |R(g | m)− FT |R(g | w) ̸= 0,

where β(g) > 0 (β(g) < 0) if the officer is biased against minority (white) drivers with risk

g.

If β(g) ̸= 0 for any g ∈ [0, 1], it immediately follows that the officer is biased, as defined

in Definition 1. However, the converse does not hold. That is, an officer with different

utilities for searching white and minority drivers can have identical distributions of Ti for

both groups drivers.10 I ignore these cases since the bias does not affect the search decision.

Since β(g) can vary with g and even change sign, the intensity and direction of bias can

vary with the unobserved (to the researcher) risk of the driver. This feature of the model

arises from the random threshold and distinguishes my model from earlier models where,

conditional on race, an officer searches all drivers with a given level of risk or none at all

(Knowles et al., 2001; Anwar and Fang, 2006; Arnold et al., 2018; Hull, 2021). A random

threshold thus extends the notion of the marginal driver to every level of risk and permits

a more nuanced analysis of bias.11 I show in Section 4 how sharp bounds on β(·) may be

derived.

A concern with existing tests of racial bias is the accuracy of the decision maker’s beliefs

and whether it is possible to distinguish between inaccurate beliefs and racial bias (Bordalo

et al., 2016; Bohren et al., 2022). To illustrate the problem, suppose an unbiased officer

incorrectly believes minority drivers are twice as risky as they truly are. His search decision

may then be written as

Search i = 1 {(1 + 1{Ri = m}) G(Ri, Zi, Vi) ≥ Ti}

= 1
{
G(Ri, Zi, Vi) ≥ T̃i

}
,

where T̃i ≡ Ti/(1 + 1{Ri = m}). In this example, the effect of inaccurate beliefs is obser-

vationally equivalent to the officer drawing thresholds that are half as large for minorities

compared to whites. Earlier tests, as well as the one I propose, may incorrectly detect bias

10For example, suppose Us
i (g;w) = kUs

i (g;m) for (s, g) ∈ {0, 1}2 and some constant k ̸= 0. The thresholds
for white and minority drivers will be identically distributed in this scenario.

11The model I propose nests the earlier models with fixed thresholds. In estimation, implementing a fixed
threshold entails imposing integrality constraints on the officer’s preferences.
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in this example since T̃i ̸⊥⊥ Ri, although Ti is the true object of interest and may be in-

dependent of race. Nevertheless, these tests for bias are still valuable since the effects of

inaccurate beliefs and bias are the same for drivers. These tests may serve as a preliminary

check to determine which officers should be reviewed, and further investigation may reveal

whether racial disparities in search behavior stem from bias or inaccurate beliefs. Given the

difficulty of distinguishing between racial bias and inaccurate beliefs, researches have begun

using experiments to elicit beliefs of decision makers when studying discrimination.12

4 Detecting and measuring racial bias

In line with Becker’s (1957, 1993) outcome test, the test I propose checks whether an officer’s

search decisions are consistent with him being unbiased. If they are not, then the officer is

deemed biased. To avoid conflating racial bias with omitted variable bias, sample selection,

and statistical discrimination, I use a partial identification approach to infer the officer’s

preferences separately from the distribution of risk.

4.1 Defining the test

For each traffic stop, I observe the driver’s race, Ri; the setting of the stop, Zi; the search

decision, Search i; and whether contraband is found, Hit i. From this, I am able to construct

the officer’s search and hit rates for race r ∈ {w,m} and setting z ∈ Z,

P{Searchi = 1 | Ri = r, Zi = z} =

∫
V
FT |R(G(r, z, v) | r) dFV |R,Z(v | r, z), (2)

P{Hit i = 1 | Ri = r, Zi = z} =

∫
V
G(r, z, v) FT |R(G(r, z, v) | r) dFV |R,Z(v | r, z). (3)

These equations simply follow from the law of iterated expectations and Corollary 1.13 The

conditional hit rate is the probability that contraband is found conditional on a traffic search

and is equal to the ratio of (2) and (3),

P{Hit i = 1 | Search i = 1, Ri = r, Zi = z} =
P{Hit i = 1 | Ri = r, Zi = z}

P{Search i = 1 | Ri = r, Zi = z}
.

The instrument Zi varies the search and hit rates by varying the distributions of risk.

To define the identified set of the model, let F denote the space of distributions of

12See Bohren et al. (2019, 2022).
13See Appendix A for the full derivation.
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(Vi, Ti,Guilty i) | Ri, Zi satisfying Assumption 1. The sharp identified set is

{F ∈ F : (2) and (3) are satisfied for all (r, z) ∈ {w,m} × Z} .

However, in testing for racial bias, the parameters of interest are only FT |R(· | w) and

FT |R(· | m). So I consider a projection of the identified set when testing for bias.

To define this projection, let

Gi ≡ G(Ri, Zi, Vi),

σ(·; r) ≡ FT |R(· | r),

where Gi denotes the risk in stop i, and σ(g; r) denotes the probability a driver with risk g

and race r is searched. The function σ(·; r) represents the officer’s search preference for race

r and is the parameter of interest. Denote the distribution of risk conditional on race and

setting by

FG|R,Z(g | r, z) ≡
∫
V
1{G(r, z, v) ≤ g} dFV |R,Z(v | r, z).

Equations (2)–(3) may then be written as

P{Search i = 1 | Ri = r, Zi = z} =

∫ 1

0

σ(g; r) dFG|R,Z(g | r, z), (4)

P{Hit i = 1 | Ri = r, Zi = z} =

∫ 1

0

g σ(g; r) dFG|R,Z(g | r, z). (5)

Let Σ denote the space of non-decreasing, right-continuous functions with domain and

codomain equal to [0, 1]; and let FG denote the space of distributions for scalar random

variables with support [0, 1]. Then the sharp identified set for the officer’s search preferences

is

Σ† ≡

{
(σ(·;w), σ(·;m)) ∈ Σ2 :

∃FG|R,Z(· | r, z) ∈ FG s.t. (4) and (5) are

satisfied for all (r, z) ∈ {w,m} × Z

}
. (6)

A testable implication for racial bias immediately follows from (6) (see Canay et al., 2013).

Corollary 2. Define Σ⋆ ≡ {σ ∈ Σ : (σ, σ) ∈ Σ†}. Under (1) and Assumption 1, if the

officer is unbiased, then Σ⋆ is non-empty.

Proof. Corollary 2 follows immediately from Definition 1 and property (iii) of Corollary 1.
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Since Σ† is sharp, Corollary 2 is the strongest testable implication of the model for

unbiasedness.

4.2 Intuition

To build intuition for the test, consider a simple setting where risk is equal to 0, 0.5, or

1. The left panel of Figure 1 shows a search preference in this setting, with each square

indicating the probability that the officer searches a driver with a given level of risk. The

right panel shows the data that can be generated by this preference. The horizontal position

of each square in the right panel is equal to the search probability σ(g; r) for some risk g;

and the vertical position is equal to the joint probability of searching the driver and finding

contraband, gσ(g; r).

Equations (4)–(5) imply that the search and hit rates must lie in the convex hull of the

three squares in the right panel, indicated by the purple region. Since the observed search

and hit rates for both groups of drivers—represented by the crosses—indeed lie in the purple

region, it is possible that both data points are generated by a common preference and it

cannot be ruled out that the officer is unbiased. The colored numbers on the left panel

indicate possible distributions of risk that generate the crosses of the same color.

Figure 2 presents the case where only the red cross lies in the convex hull generated by

the preference in the left panel. This implies that the blue cross is generated by a different

preference. Corollary 2 states that if the officer is unbiased, then there must exist a preference

that generates a purple region in the right panel containing both data points, as in Figure 1.

However, if no such preference exists, then the data for white and minority drivers must be

generated by distinct preferences and the officer must be biased.

Figure 3 presents such a case, where no single preference is capable of generating the

data for both groups of drivers. Racial bias is therefore detected. Note that this is possible

even though I only have one data point for each race of drivers, which corresponds to the

case where there is no variation in Zi. If there is variation in Zi, I would have multiple data

points for each race of drivers. This strengthens the test as it is more difficult to find a single

preference generating a larger number of data points.

Beyond testing whether an officer is biased, my framework also allows me to obtain

bounds on the intensity of bias. The left panel of Figure 3 shows two distinct preferences

that could have generated the data in the right panel, as well as the implied intensity of bias

at each level of risk. By considering different preferences and distributions of risk that are

consistent with the data, I can derive bounds on various measures of bias.
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Figure 1: How preferences generate search and hit rates

(a) Search preference
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(b) Data consistent with preference
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Note: The squares in each figure represent an officer’s search preference. Data that are consistent with the
officer’s preference must lie inside the purple region in the right panel. The colored crosses in the right panel
represent the observed search and hit rates. Since the data points lie inside the purple region, it is possible
that they are generated by the preference shown in the left panel. The colored numbers in the left panel
indicate possible distributions of risk generating the data points of the same color.

Figure 2: How search and hit rates are informative of preferences

(a) Search preference
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(b) Data inconsistent with preference
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Note: The red data point is consistent with the preference shown, whereas the blue data point is not. If the
officer is unbiased, there must exist a different preference that generates a purple region in the right panel
containing both data points. If no such preference exists, then the officer must have distinct preferences for
white and minority drivers.
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Figure 3: How search and hit rates are informative of bias

(a) Biased search preferences
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(b) Data only consistent with biased preferences
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Note: Since it is impossible to find a single preference generating the data for both white and minority
drivers, the officer must be biased. Any pair of preferences required to generate the data for both groups of
drivers implies an intensity of bias at each level of risk. By exploring the space of preferences consistent with
the data, I am able to derive bounds on various measures of bias (e.g., bias condition on risk, bias averaged
over risk).

4.3 Implementation

Corollary 2 may be implemented as a bilinear programming (BP) problem. Despite being

non-convex, bilinear programs can be solved to provable global optimality by commercial

solvers.14 For simplicity, suppose that Gi is discrete and supp (Gi) = {g1, . . . , gK} for finite

K. Then (4)–(5) become

P{Search i = 1 | Ri = r, Zi = z} =
K∑
k=1

σ(gk; r) pr,z(gk), (7)

P{Hit i = 1 | Ri = r, Zi = z} =
K∑
k=1

gk σ(gk; r) pr,z(gk), (8)

where

pr,z(g) ≡ P{Gi = g | Ri = r, Zi = z}

denotes the distribution of risk conditional on the race of the driver and setting of the stop.

Online Appendix B discusses how B-splines may be used to model preferences and risk if Gi

14Bilinear programs are solved to global optimality using a branch-and-bound algorithm. The domain
space is partitioned, and convex McCormick relaxations of the original problem are solved across the parti-
tions. See McCormick (1976), Mehlhorn et al. (2008), and Gurobi Optimization, Inc. (2021).
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is continuously distributed over the unit interval.

To specify the BP problem, I introduce the following notation.

mS
r,z ≡ P{Search i = 1 | Ri = r, Zi = z}

mH
r,z ≡ P{Hit i = 1 | Ri = r, Zi = z}

g ≡ (g1, . . . , gK)
′

σσσr ≡ (σ(g1; r), . . . , σ(gK ; r))
′

pr,z ≡ (pr,z(g1), . . . , pr,z(gK))
′

The moments mS
r,z, m

H
r,z are the search and hit rates for each race r and setting z and are

identified from the data. The vector g is the support of Gi, which I assume is known to

the researcher. The unknown parameters of the BP problem are {σσσr}r∈{w,m}, which are

the values of preferences σ(·; r) ∈ Σ evaluated at each point of g; and {pr,z}(r,z)∈{w,m}×Z ,

which are the distributions of risk conditional on race and setting. For brevity, I refer to the

preferences by {σσσr} and the distributions of risk by {pr,z}.
To ensure these parameters are consistent with the model, I impose two baseline sets of

constraints. Both sets of constraints are linear in the parameters of the model. The first set

is

0 ≤ σσσr,k ≤ σσσr,k+1 ≤ 1 for r ∈ {w,m} and k = 1, . . . , K − 1, (9)

where σσσr,k denotes the kth component of σσσr, i.e., σσσr,k = σ(gk; r). This ensures σ(·; r) ∈ Σ, as

required by Corollary 2. The second set of constraints is

pr,z,k ∈ [0, 1] for (r, z) ∈ {w,m} × Z and k = 1, . . . , K, (10)

K∑
k=1

pr,z,k = 1 for (r, z) ∈ {w,m} × Z, (11)

where pr,z,k denotes the kth component of pr,z. This ensures pr,z ∈ FG for (r, z) ∈
{w,m} × Z, as required by the definition of Σ⋆. To simplify the discussion, I assume that

supp (Zi | Ri = w) = supp (Zi | Ri = m), but this assumption is not necessary.

Define the population criterion function as

Q({σσσr}, {pr,z}) ≡
∑
r,z

∣∣σσσ′
rpr,z −mS

r,z

∣∣+∑
r,z

∣∣(g ⊙ σσσr)
′pr,z −mH

r,z

∣∣ ,
where ⊙ denotes the Hadamard (element-wise) product. The criterion function measures
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how much (7)–(8) are violated. The following proposition describes how to test for bias in

population using Corollary 2.

Proposition 1. Define Q⋆ as

Q⋆ ≡ min
{σσσr},{pr,z}

Q({σσσr}, {pr,z}) (12)

s.t. σσσw = σσσm, (9), (10), (11).

The officer is biased if Q⋆ > 0.

Proof. The constraint σσσw = σσσm restricts the officer to be unbiased. If Q⋆ > 0, then (7) or

(8) is violated for some (r, z) ∈ {w,m} × Z. Then by Corollary 2, the officer is biased.

The criterion Q⋆ in Proposition 1 is the minimum ℓ1-norm between the moments of the

model and the moments of the data when the officer is restricted to be unbiased. Since the

ℓ1-norm can be reformulated as being linear, the criterion function in (12) is bilinear. Other

norms may be used but may be more computationally demanding.

4.3.1 Adding restrictions

It is straightforward to strengthen the test by adding restrictions to Σ and FG. This can be

done in a transparent, modular fashion.

For example, consider restricting the mass of drivers to be decreasing as risk increases,

pr,z,k ≥ pr,z,k+1 for (r, z) ∈ {w,m} × Z and k = 1, . . . K − 1. (13)

Such an assumption is suitable when the mass of low-risk drivers in population is large

compared to the mass of high-risk drivers. Even if the officer is much more likely to stop high-

risk drivers, the greater volume of low-risk drivers on the road may result in a distribution of

risk (conditional on being stopped) where the mass of drivers decreases as risk increases.15

Figure 4 demonstrates how this restriction strengthens the test. The same preference is

depicted in the left and right panel. However, the range of data that can be generated by

the preference is reduced when (13) is imposed. In fact, while there exist preferences capable

of generating the data for both races when there are no restrictions on the distributions of

risk, it is no longer the case once (13) is imposed.

For more examples of imposing restrictions on the model, see Online Appendix A.

15See Online Appendix A.3 for a numerical example.
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Figure 4: Strengthening the test by restricting {pr,z}

(a) Feasible region without restriction (13)
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Note: The purple region in the left panel shows the possible data points generated by a particular preference
when there are no restrictions on the distribution of risk. The purple region in the right panel shows the
possible data points generated by the same preference, except the mass of drivers is restricted to be decreasing
as risk increases. Reducing the size of the purple region strengthens the test for racial bias by making it
easier to rule out preferences from Σ⋆.

4.4 Determining the direction and intensity of bias

If bias is detected, the next step is to determine how the officer is biased. This can be done

in several ways. Below, I first introduce a general measure of bias and show how it can be

bounded. I then show some restrictions that can be imposed to obtain specific measures of

bias.

4.4.1 Bounding a general measure of bias

The general measure of bias takes the form

θ ≡ ωωω′(σσσm − σσσw), (14)

where ωωω = (ωωω1, . . . ,ωωωK)
′ is a vector of weights with ωωωk ∈ [0, 1] for k = 1, . . . , K and∑K

k=1ωωωk = 1. θ is thus a weighted average of the bias at each level of risk and ωωω is a

counterfactual distribution of risk.16 The choice of ωωω determines the measure of bias, and

the weights can be chosen beforehand or treated as variables in the BP problem. If θ > 0,

then the officer is biased against minorities given ωωω. If θ < 0, then the officer is biased

16Oaxaca (1973), Blinder (1973), and DiNardo et al. (1996) decompose average outcomes into structural
and composition effects. By reweighting the structural effects, the authors are able to construct counterfac-
tuals. θ is constructed in a similar way, where ωωω reweights the effect of race on search rates captured by
σσσm − σσσw. See Fortin et al. (2011) for a summary of decomposition methods in economics.
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against whites.

Proposition 2. The sharp bounds on θ are obtained by solving the following BP problem,

θlb, θub ≡ min/max
ωωω,{σσσr},{pr,z}

ωωω′ (σσσm − σσσw) (15)

s.t. Q({σσσr}, {pr,z}) = 0, (9), (10), (11).

Proof. The objective in (15) defines the measure of bias, θ. Since the constraints characterize

the sharp identified set Σ†, the bounds on θ are sharp by construction.

Let Θ denote the identified set for θ. The bounds in Proposition 2 are sharp in the sense

that they are the smallest and largest values of Θ. However, because bilinear programs are

non-convex, Θ need not be the full interval [θlb, θub]. I focus the discussion on the bounds in

Proposition 2, although Θ can be constructed by “inverting” (15), similar to how a confidence

interval can be constructed by inverting a statistical test. See Appendix B for how to fully

recover Θ.

When there are no restrictions on σσσm − σσσw, the officer can be biased against one group

of drivers for a given level of risk and reverse their direction of bias at another level of risk.

If the researcher has a strong prior on the direction of bias, then a sign restriction on the

elements of σσσm − σσσw can easily be imposed. For example, bias against white drivers can be

ruled out if every element of σσσm − σσσw is restricted to be non-negative.

4.4.2 Bounding bias conditional on risk

A parameter of interest may be the bias conditional on risk, β(·), as defined in Definition 2.

The bounds on β(gk) are obtained by setting

θ = σ(gk;m)− σ(gk;w) = β(gk).

This corresponds to setting ωωω = ek, where ek ∈ RK is the kth standard basis vector. The

researcher can therefore bound the bias at every level of risk. It is possible for 0 ∈ [θlb, θub]

for every level of risk even if the officer fails the test in Proposition 1. This corresponds to

the case where bias is detected, but the direction of bias is undetermined.

4.4.3 Bounding average bias

Another parameter of interest is the average bias under a counterfactual distribution of

risk. A specific distribution of risk can be imposed by setting the weights ωωω equal to that
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distribution. For example, the average bias under the counterfactual where risk is uniform

for both groups of drivers corresponds to the constraint

ωωωk =
1

K
for all k = 1, . . . K.

A more interesting measure of bias is one that uses the actual unobserved distribution of

risk for white or minority drivers. For example, the following constraint sets ωωω equal to the

distribution of risk for white drivers in the data,

ωωωk = P{Gi = gk | Ri = w}

=
∑
z∈Z

P{Gi = gk | Ri = w,Zi = z} P{Zi = z | Ri = w}

=
∑
z∈Z

pw,z,k P{Zi = z | Ri = w}, (16)

where P{Zi = z | Ri = w} is identified from the data. This choice of ωωω implies that

θ = E[β(Gi) | Ri = w], where θ measures how search rates would change for white drivers if

they were treated as minorities.

4.5 Estimation and inference

In this section, I discuss how these methods can be performed on a sample. Statistical

inference is based on the Re-Sampling (RS) test of Bugni et al. (2015), who propose a

specification test for partially identified models defined by moment inequalities; as well as

Bugni et al. (2017), who propose an inference method for subvectors of partially identified

parameters defined by moment inequalities.

4.5.1 Testing for bias

To adapt the RS test to my setting, several terms must first be defined. Let m ≡
(mS

r,z,m
H
r,z)

′
(r,z)∈{w,m}×Z denote the vector of search and hit rates for all races and settings.

Similarly, let D denote a diagonal matrix containing Var [Search i | Ri = r, Zi = z] and

Var [Hit i | Ri = r, Zi = z] for all races and settings. Let m̂ and D̂ denote consistent esti-

mates of m and D. Let m({σσσr}, {pr,z}) denote the vector of search and hit rates implied by

the model parameters, i.e., the right hand sides of (7)–(8). Finally, define the scaled sample

criterion as

Q̂({σσσr}, {pr,z}) ≡
√
n
∥∥∥D̂−1/2 (m({σσσr}, {pr,z})− m̂)

∥∥∥
1
,
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where n is the total number of traffic stops and ∥ · ∥1 denotes the ℓ1-norm.17

To test the null hypothesis that the officer is unbiased, define

Q̂⋆
Unbiased ≡ min

{σσσr},{pr,z}
Q̂({σσσr}, {pr,z})

s.t. σσσw = σσσm, (9), (10), (11),

and

Q̂⋆
Biased ≡ min

{σσσr},{pr,z}
Q̂({σσσr}, {pr,z})

s.t. (9), (10), (11).

Then the test statistic

τ̂ ≡ Q̂⋆
Unbiased − Q̂⋆

Biased (17)

compares the fit of the model when the officer is restricted to be unbiased against the fit

without the restriction. A large test statistic suggests the fit of the model is affected by the

restriction of unbiasedness and is evidence against the null hypothesis.

To estimate the distribution of τ̂ under the null hypothesis, I resample the data B times.

The data are resampled at the weekly level to account for possible dependencies over time.

For each resampled dataset, indexed by b = 1, . . . , B, I calculate (17) and denote its value by

τ̂b. Define τ̂Null
b ≡ τ̂b − τ̂ . I reject the null hypothesis at the α significance level if τ̂ exceeds

the 1− α quantile of {τ̂Null
b }.

4.5.2 Estimating the intensity of bias

I estimate the bounds on the bias by solving

θlb, θub ≡ min/max
ωωω,{σσσr},{pr,z}

ωωω′ (σσσm − σσσw)

s.t. Q̂({σσσr}, {pr,z}) ≤ Q̂⋆
Biased, (9), (10), (11).

17Q̂ is based on the scaled sample criterion proposed by Bugni et al. (2015), which requires a test function.
I use a variant of the Modified Method of Moments test function from Andrews and Guggenberger (2009),
with the ℓ1-norm being used instead of the squared Euclidean norm. This test function satisfies the regularity
conditions in Bugni et al. (2015) (see Andrews and Soares (2010)). In addition, the matrixD does not depend
on the model parameters, although it can in general. D does not depend on the model parameters in my
setting because the model may defined using moment equalities where the model parameters are separable
from the data (see (7)–(8); see Example 6.1 of Bugni et al. (2015) for another example).
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I construct the confidence interval for the intensity of bias by inverting the test for bias.

That is, rather than test the specification that the officer is unbiased, I test the specification

that the intensity of bias is equal to t ∈ [−1, 1]. If the test does not reject the specification

at the α significance level, then t enters the (1−α) confidence interval. See Appendix B for

a full description of this procedure.

5 Application

I apply the test to police traffic data from the Metropolitan Nashville Police Department

(MNPD). The data contain records of traffic stops for over 2,200 MNPD officers between

2010 and 2019 and is made available by the Stanford Open Policing Project (Pierson et al.,

2020).

5.1 Data

Each observation in the data represents a traffic stop made by an officer. I observe the

driver’s race, age, sex, state of registration, and an anonymized officer identifier. I observe

the logistical details of the traffic stop, including the time and geocoordinates of the stop;

the reason for the traffic stop; whether a search occurred, and if so, why the search occurred

and whether any contraband was found. I categorize the reason for stop into three groups:

driving-related reasons, non-driving reasons, and investigative reasons.18 Reasons for traffic

searches include driver consent, probable cause, and plain view of contraband. Although the

data categorize contraband into weapons and drugs, I treat all forms of contraband as being

the same.

I supplement the traffic data with data provided by the MNPD on criminal incidents and

calls for services,19 as well as local measures of racial composition and median household in-

come from the American Community Survey (ACS). Both the MNPD and ACS supplemental

data are at the census tract level, and they allow me to control for environmental factors

that potentially correlate with the setting of the stop and the officer’s search preferences.

18Driving-related reasons correspond to how the driver maneuvers her vehicle and how she interacts with
other drivers on the road. They include moving traffic violations, safety violations, and vehicle equipment
violations. Non-driving reasons correspond to reasons unrelated to how the vehicle is driven, and include
seat belt violations, parking violations, registration violations, and issues with child restraints. Investigative
stops are its own category and not an aggregate of other reasons.

19I restrict criminal incidents and calls for services to those related to violent crimes, theft, or drugs, as
these may affect an officer’s decision to search for contraband.
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Table 1: Summary of stops, searches, and hits for select 50 officers

Full sample Avg. by officer

White Minority White Minority

Stops 109,023 113,405 2,180 2,268
Searches 12,622 15,732 252 315
Hits 1,831 2,741 37 55

Search rate 0.1158 0.1387 0.1546 0.1884
Uncon. hit rate 0.0168 0.0242 0.0277 0.0297
Con. hit rate 0.1451 0.1742 0.2431 0.2135

Notes: For each officer, the conditional hit rate can be calcu-
lated from the ratio of the unconditional hit rate and search
rate.

5.2 Restricting the sample

To study bias in traffic searches, the searches used in the analysis must be discretionary.

Traffic searches motivated by rules or mandates are therefore excluded from the study. This

includes searches that are incidental to an arrest, inventory searches, and searches based on

warrants.20 In total, 72% of the traffic searches in the data are retained.

I restrict my attention to the 50 officers with the highest number of traffic searches. This

is because the methods discussed in Section 4.3 are performed on each officer separately, and

in order to reasonably estimate their search and hit rates, I require each of them to have

made a large number of traffic stops and searches. On average, these officers have made

2,180 stops and 252 searches for white drivers, and 2,268 stops and 315 searches for minority

drivers. Remarkably, this small fraction of officers make up one third of all the searches in

the data.

Finally, I focus on comparing the officer’s preferences for searching white drivers against

that of Black and Hispanic drivers. “Minority” therefore exclusively refers to Black and

Hispanic drivers.

Table 1 summarizes the number of traffic stops, searches, and hits in the restricted sample.

20Searches incidental to an arrest occur after a driver has been arrested. Inventory searches are re-
quired whenever a vehicle is impounded by the police. Warrants to search a driver are typically obtained
before the traffic stop, suggesting that warrant-based searches are predetermined and non-discretionary.
Hernández-Murillo and Knowles (2004) propose a methodology to incorporate non-discretionary searches
into the analysis.
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5.3 Context variable and controls

I choose Zi to be combinations of the day of the week and the patrol shift. I divide the

days into weekdays and weekends, and patrol shifts are either in the morning (7 a.m. to 3

p.m.), evening (3 p.m. to 11 p.m.), or night (11 p.m. to 7 a.m.). This generates up to six

values of Zi for each officer. Variation in the search and hit rates across settings strengthens

the test by making it more difficult to find a single preference capable of generating the

data across all settings for both groups of drivers. To support the independence condition

in Assumption 1, I control for variables that may be correlated with both Zi and officer

preferences. These control variables are summarized in Table 2.

The first set of controls consists of observable characteristics of the driver besides race,

which includes age, sex, and state of registration. This set of controls accounts for how

officers may feel differently towards searching certain demographics who may drive during

different times of the day and days of the week. For example, elderly female drivers may

drive more often during the morning on weekdays, and officers may be reluctant to search

elderly female drivers.

The second set of controls include the details of the traffic encounter, namely the reason

for the stop and, if a search took place, the reason for the search.21 These variables control

for how certain aspects of the traffic stop (e.g., being stopped for driving-related reasons) or

driver behavior (e.g., having contraband in plain view) might affect an officer’s preferences

and be correlated with the setting. For example, Makofske (2020) finds that officers in

Louisville, Kentucky arrest 40% of drivers stopped for failing to signal, compared to 1%

of drivers stopped for any other reason. This suggests that certain stops in Louisville are

pretextual and the reason for stopping a driver can indicate an officer’s search preference.

Although the MNPD data do not show signs of pretextual stops, they show a 10% increase

in the proportion of stops being attributed to driving-related reasons across the evening

and night shifts,22 as well as a 50% increase in searches attributed to contraband being in

plain view across the same pair of shifts. Controlling for these features of the traffic stop

reduces the concern that the test is detecting differences along these dimensions rather than

detecting racial bias.

The final set of controls relates to the environment where the stop takes place. This

includes whether the stop was made on a street or a highway; which police precinct the

stop was made in; the racial composition, household income, and crime rate of the census

21Durlauf and Heckman (2020) raise concerns about the credibility of self-reported police data. While
the concern is valid, there is currently not a good solution.

22In a study on endogenous driving behavior, Kalinowski et al. (2021) find that minority drivers adjust
their driving behavior during the day, when their race is more visible to the officer.
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Table 2: Summary of control variables

Drivers stopped Drivers searched

White Minority White Minority

Driver characteristics
Male 0.6032 0.6007 0.6613 0.7722
Age 37.28 34.64 32.31 30.49
Out of state 0.0638 0.0330 0.0490 0.0340

Reason for stop
Driving 0.8803 0.8776 0.8668 0.8687
Non-driving 0.1070 0.1065 0.1072 0.1031
Investigation 0.0127 0.0159 0.0260 0.0282

Reason for search
Plain view 0.4978 0.2606
Consent 0.4336 0.5938
Probable Cause 0.0686 0.1456

Location
Highway 0.1228 0.0644 0.0759 0.0495
Precinct 1 0.0763 0.0509 0.0640 0.0521
Precinct 2 0.1190 0.1760 0.0882 0.1920
Precinct 3 0.1042 0.1446 0.0913 0.1377
Precinct 4 0.0395 0.0249 0.0789 0.0381
Precinct 5 0.3618 0.2567 0.2573 0.2227
Precinct 6 0.0400 0.1100 0.0257 0.0774
Precinct 7 0.1366 0.1528 0.1469 0.1540
Precinct 8 0.1225 0.0842 0.2477 0.1260

Census tract demographics
Percent white 0.5901 0.4523 0.6028 0.4580
Median household income 49038 41170 48642 40029
Crime incident rate 0.0256 0.0369 0.0305 0.0400
Calls for MNPD services 0.0207 0.0216 0.0212 0.0227

Notes: Crime and call rates are per capita and are restricted to those per-
taining to violent crimes, theft, or drugs.
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tract; and the frequency of calls for MNPD services originating from the census tract. This

accounts for the possible correlation between an officer’s search preferences and Zi induced by

his surroundings. Such a correlation may arise because an officer is more hesitant to conduct

a search when in a low-income or high-crime neighborhood, where he may find himself more

often during the night.23

Some potential concerns may be that officers are not randomly assigned to shifts, or

there are ticket quotas, or officers are instructed to search more aggressively during certain

times. Each issue may be seen as a threat to Assumption 1. Regarding endogenous selection

of shifts, Assumption 1 will hold as long as the officer is equally willing to search drivers

during each shift. Regarding the ticket quotas, Tennessee has explicit laws banning quotas

on traffic citations, although this has not stopped departments from implementing such

quotas.24 Nevertheless, ticket quotas target the stop decision of officers. As long as ticket

quotas do not affect search preferences, then the quotas only impact the search decisions

through changing the distribution of risk via sample selection. Finally, regarding the concern

that officers are instructed to search more aggressively during different shifts, there were no

such policies during the time frame of the data I analyze. To the best of my knowledge, such

policies were only implemented beginning in July of 2019.25

5.4 Setting up the BP problem

I discretize the support of risk to be

g = {0, 0.025, 0.05, 0.075︸ ︷︷ ︸
Increments of 0.025

, 0.1, 0.15, 0.20, 0.25︸ ︷︷ ︸
Increments of 0.05

, 0.3, 0.4, 0.5, 0.6︸ ︷︷ ︸
Increments of 0.1

, 0.75, 1}.

23Roh and Robinson (2009) find there to be spatial correlation in traffic search decisions even after
controlling for driver characteristics. The authors attribute the correlation to similarities in environmental
variables, such as the racial composition of the neighborhood and the volume of police allocated nearby.
Novak and Chamlin (2012) also find that the police workload (measured via calls for services) and degree of
‘social disorganization’ (e.g., percentage of single parent households, percentage of residents in poverty) are
predictive of officer behavior.

24For example, the mayor of Ridgetop, TN tried to have the city’s police department enforce a ticket quota
to raise money for the city, only to be turned in by the city’s police chief (Ferrier, 2019). See Tennessee Code
§39-16-516 (2014) for the law banning ticket quotas.

25In July of 2019, the MNPD introduced the Entertainment District Initiative, which assigned 17 addi-
tional officers to the Entertainment District on Fridays and Saturdays between 6 p.m. and 4 a.m. to improve
public safety. These officers performed high-visibility patrols on foot, bike, and utility task vehicles, and
would make unannounced visits to local establishments. In February of 2021, the MNPD introduced the
Office of Alternative Policing Strategies to address an increase in violent crime in Nashville. A new shift of
80 officers working between 5:30 p.m. and 3:30 a.m. was added across all precincts to perform high-visibility
patrols to deter and detect violent crimes. See Aaron et al. (2019), Rau (2021), and McDonald (2021).
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Table 3: Search and conditional hit rates by Zi

White Minority

Day Shift Search Cond. Hit Search Cond. Hit

Weekday Morning 0.0376 0.2617 0.0603 0.2265
Weekday Evening 0.1268 0.1774 0.1528 0.1826
Weekday Night 0.2711 0.1080 0.2381 0.1645

Weekend Morning 0.0372 0.2656 0.1091 0.1272
Weekend Evening 0.1349 0.1044 0.1259 0.1597
Weekend Night 0.2753 0.0562 0.2334 0.1064

Mean 0.1158 0.1958 0.1387 0.1868

Notes: Search and conditional hit rates account for the control vari-
ables. The mean rates for the observed data are calculated by weight-
ing each setting by the proportion of stops in the data made in each
setting, and taking a weighted average of the rates across the settings.

I choose g to be finer at lower levels of risk since Table 1 shows that the average conditional

hit rates are between 21% and 24%, which suggests most drivers searched are relatively

low-risk. Table 3 presents the conditional hit rates for each setting after accounting for

controls. The average conditional hit rates remain low, ranging from 5% to 27%. The model

also implies that drivers who are searched represent the riskiest subset of drivers who are

stopped. In conjunction with the low conditional hit rates, this further suggests that most

drivers stopped are low-risk. I incorporate this into the model by imposing the monotonicity

restriction in (13), requiring that pr,z is decreasing as risk increases for all (r, z) ∈ {w,m}×Z.

I do not impose any restrictions on σσσ except that it is non-decreasing in risk (as implied

by Assumption 1) and lies in the unit interval.

The sample moments m̂S
r,z, m̂H

r,z are obtained using the predicted probabilities from

logistic regressions. Since traffic searches and hits can be rare events for some officers,

I use Firth’s logistic regression with intercept-correction to obtain unbiased estimates of

the search and hit rates (Puhr et al., 2017).26 To construct m̂S
r,z, I first regress Search i

on setting Zi and controls Xi conditional on race Ri = r. This provides an estimate of

P{Search i = 1 | Ri = r, Zi = z,Xi = x}. I then set m̂S
r,z equal to the predicted probabilities

26Firth’s logistic regression reduces the bias in coefficient estimates in small samples. However, it biases
predicted probabilities towards 0.5. In a simulation study, Puhr et al. (2017) show that the bias in the
predicted probabilities can be corrected by adjusting the intercept term. This adjustment also debiases
predicted probabilities for rare events, and outperforms other methods seeking to debias logistic regressions
in rare events data, including King and Zeng (2001).
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Figure 5: Variation in search and hit rates across Zi

(a) Search rate

0.0 0.1 0.2 0.3

Std. dev. of m̂S
r,z

(b) Hit rate

0.0 0.1 0.2 0.3

Std. dev. of m̂H
r,z

Avg. over Xi | Ri = w Avg. over Xi | Ri = m

Note: The left (right) panel shows the distribution of the standard deviation of search (hit) rates
across Ri and Zi. The standard deviation of the search (hit) rates across Ri and Zi is calculated for
each officer, and the histograms show the distribution of those standard deviations. The histograms
in red (blue) correspond to the case where m̂S

r,z and m̂H
r,z are obtained by averaging the fitted search

and hit rates from logistic regressions over the distribution of Xi | Ri = w (Xi | Ri = m).

averaged over the sample distribution of Xi for either race of drivers, i.e.,

m̂S
r,z = Ê

[
P̂{Search i | Ri = r, Zi = z,Xi}

∣∣∣ Ri = r′
]
for r′ ∈ {w,m}. (18)

In Section 5.5, I present results for both r′ = w and r′ = m. This approach allows me to

control for Xi such that the estimates are representative of each race.

The hit rates m̂H
r,z are estimated as in (18), except I regress Hit i on Zi and Xi conditional

on each race.

Figure 5 summarizes the variation in search and hit rates generated by Zi within officer.

The figure is obtained by calculating the standard deviations of {m̂S
r,z} and {m̂H

r,z} across

Ri and Zi for each officer. The histograms of these standard deviations are presented in

Figure 5. If the officer is biased, then greater variation in search and hit rates increases the

power of the test by making it more difficult to find a single preference generating the data

for both groups of drivers. Figure 5 shows that Zi generates greater variation in search rates

compared to hit rates, suggesting that the power of the test in my sample stems primarily

from the variation in search rates.27

27There are three officers with no variation in hit rates as they have never found contraband despite
having searched many drivers. For these officers, the criterion and test exclusively depend on (7). To see
why, note that if P{Searchi = 1 | Ri = r, Zi = z} > 0 but P{Hit i = 1 | Ri = r, Zi = z} = 0 for some r and
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Figure 6: Racial disparities in search and hit rates by officer

(a) Uncond. hit rate, avg. over Xi | Ri = w
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(c) Uncond. hit rate, avg. over Xi | Ri = m
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(d) Cond. hit rate, avg. over Xi | Ri = m
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Note: Each point corresponds to an individual officer. Search and hit rates of each officer are
averaged across the different settings, controlling for observed characteristics of the driver. Positive
disparities indicate that minority drivers have higher rates compared to white drivers. Red points
indicate officers for whom the null hypothesis of being unbiased is rejected at the 5% significance
level. Orange points indicate officers for whom the null hypothesis is close to being rejected (re-
jection at the 6% significance level). Grey points indicate the remaining officers for whom the null
hypothesis is not rejected.
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5.5 Results

When averaging the search and hit rates over Xi | Ri = w, I reject the null hypothesis that

the officer is unbiased at the 5% significance level for four of the 50 officers. In addition, three

officers are at the margin of failing the test, i.e., the null hypothesis may only be rejected

for them at the 6% significance level.

When averaging the search and hit rates over Xi | Ri = m, I again reject the null

hypothesis for four officers. Compared to the previous case where search and hit rates were

averaged over Xi | Ri = w, two of these officers also failed the test, and one of these officers

was at the margin of failing.

The change in the set of officers who fail the test suggests that bias may depend on

observable characteristics of the driver and traffic stop, Xi. Table 2 compares the distribution

of Xi for white and minority drivers, and shows that minority drivers are on average younger,

and are stopped in different precincts in areas with higher crime rates, lower income, and

lower proportion of white residents. Some of these differences in Xi may generate or remove

biases. Note, however, that these differences in Xi are balanced across both groups of drivers

when testing for bias, so the test is not conflating differences inXi across race with differences

in search preferences across race.

Figure 6 shows the relationship between the racial disparities in search and hit rates, and

whether an officer is flagged as being racially biased. Positive disparities in search (hit) rates

indicate that minority drivers have higher search (hit) rates compared to whites. The top two

panels correspond to the case where search and hit rates are averaged over the distribution of

Xi | Ri = w, and the bottom two panels correspond to the case where the rates are averaged

over the distribution of Xi | Ri = m. Not surprisingly, officers with large racial disparities in

search or conditional hit rates are flagged as racially biased. However, the test is also able

to detect bias when such disparities are small. This suggests the proposed methodology is

able to pick up subtleties in the data that may escape earlier tests only comparing search

and hit rates across groups of drivers.

Figure 7 presents the data for an officer who passes the test, i.e., bias is not detected. The

circles in the left panel represent the search and hit rates by race and setting, and the size of

the circles indicate the number of stops associated with the setting. The purple region shows

the set of data points that are consistent with the preference in the right panel. Since all

the data points lie inside the purple region, it is possible for the observed data for white and

minority drivers to be generated by a common preference. Applying the test from Section 4,

I cannot reject the null hypothesis that the officer is unbiased at the 5% significant level.

z, then it must that P{Gi = 0 | Ri = r, Zi = z} = 1. This distribution of risk ensures the hit rate is 0. The
test thus only involves finding preferences {σσσr} to match the search rates {mS

r,z}.

32



Figure 7: Example where bias is not detected

(a) Data
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Note: Each dot in the left panel corresponds to the search and hit rates for a particular race and
setting. The size of the dots represents the number of stops the data are associated with. Search
and hit rates are averaged over the distribution of Xi | Ri = w. The purple polygon in the left
panel represents the data that can be generated by the preference shown in the right panel.

Figure 8 presents the data for an officer who fails the test, i.e., bias is detected. The

top right panel presents one possible set of estimates of the officer’s search preferences.

The bottom panel presents the estimated bounds on the bias, with the gray band showing

the bounds conditional on risk, and the dashed lines showing the bounds on the average

bias. The red (blue) dashed lines indicate the average bias when the distribution of risk is

consistent with that of white (minority) drivers in the data. The estimated bounds on the

bias conditional on risk suggest that this officer searches minority drivers more than equally

risky white drivers when risk falls below 0.3. However, as risk increases, the bounds on bias

decrease and become non-positive, suggesting the officer changes direction of bias when the

risk becomes sufficiently large. This change in the direction of bias is also seen in the top

right panel, where the two curves intersect. On average, minority drivers are estimated to

be searched at least 8.8 percentage points less if they were treated as white drivers, holding

their distribution of risk constant. In contrast, white drivers are estimated to be searched at

least 9.9 percentage points more on average if they were treated as minority drivers, holding

their distribution of risk constant. These estimates are large in magnitude considering this

officer searches 4.5% of white drivers and 14.6% of minority drivers.

Figure 9 presents the data for another officer who fails the test. This officer searches

4.0% of white drivers and 12.8% of minority drivers, and his search rates are relatively stable

across settings. However, this officer has never found contraband on either group of drivers,

suggesting the officer only interacts with with zero-risk drivers. The racial disparity in search
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Figure 8: Example where bias is detected
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(c) Estimated bounds on bias
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Note: Search and hit rates are averaged over the distribution of Xi | Ri = w. The red (blue) dashed
lines in the bottom panel indicate the bounds on the average bias when the distribution of risk is
consistent with that of white (minority) drivers.

rates is therefore not justified and bias is detected. Moreover, if the officer is searching only a

fraction of zero-risk drivers from each race, then the officer is effectively searching at random.

Feigenberg and Miller (2022) also find evidence to suggest officers search at random. Such

behavior is consistent with the model I propose in (1) and necessitates a random threshold.

In contrast, random searches contradict earlier models with fixed thresholds, which imply

officers search all drivers with a given level of risk or none at all.

See Online Appendix C for the estimated bias for all the officers who fail the test.

Figure 10 presents the estimated bounds on the average bias for the officers who fail the

test. The left panel corresponds to the estimates where the search and hit rates are averaged

over Xi | Ri = w, and the right panel corresponds to the estimates where the search and hit

rates are averaged over X | Ri = m. The red bounds correspond to the bias being averaged

over the distribution of risk of white drivers and indicate how much more white drivers
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Figure 9: Example of random thresholds
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(b) Estimated bounds on bias
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Note: Search and hit rates are averaged over the distribution of Xi | Ri = w. If white drivers were
treated as minority drivers, holding their risk constant, they would be searched approximately 7.5
percentage points more on average. If minority drivers were treated as white drivers, holding their
risk constant, they would be searched between 7.4 and 7.5 percentage points less on average.

would be searched if they were treated as minorities. The blue bounds correspond to the

bias being averaged over the distribution of risk for minority drivers and indicate how much

less minority drivers would be searched if they were treated as whites. The gray bounds

correspond to the 95% confidence interval. The squares indicate the search rate observed in

the data.

When averaging search and hit rates overXi | Ri = w, the estimates suggest white drivers

would be searched at least 2.4 percentage points more on average (83.1% more relative to

the observed search rate of 2.9%) by these biased officers if the drivers were treated as

minorities, holding their risk constant. In contrast, minority drivers would be searched at

least 1.2 percentage points less on average (17.3% less relative to the observed search rate of

6.8%) if they were treated as whites, holding their risk constant.28

When averaging search and hit rates overXi | Ri = m, the estimates suggest white drivers

would be searched at least 1.2 percentage points more on average (22.3% more relative to the

observed search rate of 5.2%) by these biased officers if the drivers were treated as minorities,

holding their risk constant. Minority drivers would be searched at most 8.7 percentage points

more on average (99% more relative to the observed search rate of 8.8%) if they were treated

as whites, holding their risk constant. The possible increase in search rates is because the

estimated bounds on the average bias for one officer are [−0.755,−0.149], suggesting he is

28These estimates are obtained by taking a weighted average of the red or blue lower bounds, with the
weights being equal to the proportion of stops (conditional on race) made by each officer.

35



Figure 10: Bounds on average bias E[β(Gi)] for biased officers

(a) Cond. on Xi | Ri = w
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Note: The left (right) panel shows the estimated bounds when search and hit rates are averaged
over the distribution of Xi | Ri = w (Xi | Ri = m). Positive average bias indicates minority drivers
are searched more often than equally risky white drivers on average. Red (blue) bounds indicate
the bias averaged over the distribution of risk for white (minority) drivers in the data. Gray bounds
indicate the 95% confidence interval. The colored squares indicate the search rates observed in the
data for each officer.

biased against white drivers on average.29

6 Conclusion

In this paper, I provide a flexible approach to detecting and measuring racial bias in police

traffic searches. The partial identification framework enables the test to be applied even

amid sample selection on unobservables and statistical discrimination. In addition, by using

an IV to vary the risk among drivers stopped, the methods I propose may be applied to

individual officers, allowing for unrestricted heterogeneity in preferences and beliefs across

officers.

This paper also contributes to the literature from a modeling standpoint, as earlier pa-

pers studying racial bias have either assumed or required choice models with deterministic

thresholds, whereas I allow the threshold to be random. This relaxation permits a richer

notion of bias, where the direction and intensity of bias may depend on the unobserved (to

the researcher) risk of the driver. Sharp bounds on these measures immediately follow from

the econometric model. Additional restrictions to tighten these bounds or strengthen the

test may be imposed in a transparent and modular fashion. Implementing these methods

29This officer accounts for 15.7% of searches among the biased officers.
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involves solving bilinear programs, which are novel in the literature on discrimination and

econometrics in general.

I apply the proposed methods on police traffic data from the Metropolitan Nashville

Police Department and find evidence to suggest 6 of the 50 officers analyzed are biased. For

each of these officers, I am able to estimate the fraction of searches stemming from bias.

The estimates suggest that the presence and intensity of bias for some officers vary with the

observable characteristics and unobserved risk of the driver.

A natural extension of the paper is to apply these methods to other data sets. These

methods can be applied to standard police traffic data, and the assumptions of the model can

be supported by incorporating local demographic data that are typically public or available

upon request, such as household incomes and crime rates. These methods can also be applied

to study discrimination in different settings along different dimensions, such as testing for

and measuring racial bias in healthcare or gender bias in labor markets.
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Appendix

A Proofs

A.1 Deriving the random threshold in (1)

The officer wishes to maximize his expected utility. As shown in the main paper, the expected

utility for decision Search i = s is

E[U s
i (Guilty i;Ri) | Ri = r, Zi = z, Vi = v]

= G(r, z, v) U s
i (1;Ri) + (1−G(r, z, v)) U s

i (0;Ri)

= U s
i (0;Ri) +G(r, z, v) (U s

i (1;Ri)− U s
i (0;Ri))

So the officer chooses to search the driver if the expected utility from searching is at least as
great as that of not searching, which is equivalent to

E[U1
i (Guilty i;Ri) | Ri = r, Zi = z, Vi = v] ≥ E[U0

i (Guilty i;Ri) | Ri = r, Zi = z, Vi = v]

⇐⇒ U1
i (0;Ri) +G(r, z, v)

(
U1
i (1;Ri)− U1

i (0;Ri)
)
≥ U0

i (0;Ri) +G(r, z, v)
(
U0
i (1;Ri)− U0

i (0;Ri)
)

⇐⇒ G(r, z, v)

[ (
U1
i (1;Ri)− U1

i (0;Ri)
)

−
(
U0
i (1;Ri)− U0

i (0;Ri)
) ]

≥ U0
i (0;Ri)− U1

i (0;Ri)

⇐⇒ G(r, z, v) ≥ U0
i (0;Ri)− U1

i (0;Ri)

[U1
i (1;Ri)− U1

i (0;Ri)]− [U0
i (1;Ri)− U0

i (0;Ri)]︸ ︷︷ ︸
Random utility threshold Ti

.

The final line follows from Assumption 1(i), which ensures the denominator in the expression

for Ti is strictly positive.
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A.2 Deriving the search and hit rates

The search rate is derived as follows.

E[Search i | Ri = r, Zi = z]

= E[E[Search i | Ri = r, Zi = z, Vi] | Ri = r, Zi = z] (A.1)

= E[E[1{G(Ri, Zi, Vi) ≥ Ti} | Ri = r, Zi = z, Vi] | Ri = r, Zi = z] (A.2)

= E[FT |R(G(r, z, Vi) | r) | Ri = r, Zi = z] (A.3)

=

∫
V
FT |R(G(r, z, v) | r) dFV |R,Z(v | r, z),

where the first equality is by law of iterated expectations; the second equality is by substi-

tuting the definition of Search i; the third equality follows from Ti ⊥⊥ (Zi, Vi) | Ri imposed

by property (ii) in Corollary 1; the final equality follows by definition of conditional expec-

tations.

The hit rate is derived as follows.

E[Hit i | Ri = r, Zi = z]

= E[E[Hit i | Ri = r, Zi = z, Vi] | Ri = r, Zi = z]

=

∫
V
E[Hit i | Ri = r, Zi = z, Vi = v] dFV |R,Z(v | r, z), (A.4)

where the first equality is by law of iterated expectations; and the second equality is by

definition of conditional expectations. The expectation in the integrand may be written as

E[Hit i | Ri = r, Zi = z, Vi = v]

= E[Search i ×Guilty i | Ri = r, Zi = z, Vi = v]

= E[Guilty i | Search i = 1, Ri = r, Zi = z, Vi = v] E[Search i | Ri = r, Zi = z, Vi = v]

= E[Guilty i | G(r, z, v) > Ti, Ri = r, Zi = z, Vi = v] E[Search i | Ri = r, Zi = z, Vi = v]

= E[Guilty i | Ri = r, Zi = z, Vi = v] E[Search i | Ri = r, Zi = z, Vi = v]

= G(r, z, v) FT |R(G(r, z, v) | r),

where the first equality follows by definition of Hit i; the second equality follows by law of

iterated expectations, and that Search i × Guilty i = 0 when Search i = 0; the third equality

follows from the definition of Search i; the fourth equality follows from Ti ⊥⊥ Guilty i | Ri, Zi, Vi

from Corollary 1; and the final equality follows by definition of G(·, ·, ·), as well as from (A.1)–

(A.3). Substituting this expression for E[Hit i | Ri = r, Zi = z, Vi = v] into (A.4) completes
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the derivation of the hit rate.

B Identifying and conducting inference on θ

B.1 Constructing Θ

The bounds in Proposition 2 are sharp in the sense that they are the smallest and largest

values of Θ. However, because bilinear programs are non-convex, Θ need not be the full

interval derived in Proposition 2. Θ may be recovered by solving the following BP problem

for t ∈ [−1, 1],

Q⋆
θ(t) ≡ min

ωωω,{σσσr},{pr,z}
Q({σσσr}, {pr,z})

s.t. ωωω′(σσσm − σσσw) = t, (9), (10), (11).

The level of bias t is in Θ if and only if Q⋆
θ(t) = 0.

B.2 Confidence intervals for Θ

The confidence interval for θ may be constructed by inverting the test for racial bias. To

determine whether t ∈ [−1, 1] is in the confidence interval, I first solve the following BP

problem,

Q̂⋆
θ(t) ≡ min

ωωω,{σσσr},{pr,z}
Q̂({σσσr}, {pr,z})

s.t. ωωω′(σσσm − σσσw) = t, (9), (10), (11).

I then construct the test statistic

τ̂θ(t) = Q̂⋆
θ(t)− Q̂⋆

Bias, (B.5)

which compares the fit of the model when the officer is restricted have bias θ = t against the

fit when the officer is allowed to have any level of bias.

To estimate the distribution of τ̂θ(t) under the null hypothesis that t ∈ Θ, I resample

the data B times. For each resampled dataset, indexed by b = 1, . . . , B, I calculate (B.5)

and denote it by τ̂θ,b(t). Define τ̂Null
θ,b (t) ≡ τ̂θ,b(t) − τ̂θ(t). Then t does not enter the (1 − α)

confidence interval for θ if τ̂ exceeds the 1− α quantile of {τ̂Null
θ,b }.
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