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Abstract

I develop a framework to detect and measure racial bias in police traffic searches.

Officers are evaluated individually, permitting unrestricted officer heterogeneity and

nonrandom assignment of drivers to officers. By using a threshold model with random

thresholds, the direction and intensity of bias can vary with the probability that a driver

carries contraband. Sharp bounds on the intensity of bias are derived using bilinear

programs. I evaluate 50 officers from the Metropolitan Nashville Police Department

and find 6 officers to be biased. Estimates suggest that the intensity of bias varies with

the probability that a driver carries contraband.
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1 Introduction

Disparities across race, sex, and other protected classes arise in many settings, including

the labor market (Card et al., 2016; Agan and Starr, 2018; Kline et al., 2022), the criminal

justice system (Arnold et al., 2018; Feigenberg and Miller, 2022), healthcare (Obermeyer

et al., 2019; Wasserman, 2023), credit attribution (Sarsons et al., 2021; Ductor et al., 2021;

Onuchic and Ray, 2023), and lending markets (Bhutta and Hizmo, 2021; Bartlett et al.,

2022). However, measuring the extent to which bias contributes to the disparities, if at all,

is often difficult due to data limitations and the challenges they impose on the methodology.

In this paper, I develop a framework to test for and measure bias, and I apply this

framework to study racial bias in police traffic searches. Similar to earlier papers, the officer

is modeled to search drivers only if their probability of carrying contraband (“risk”) exceeds

a threshold. This threshold represents the officer’s preference for searching drivers, as well

as other factors that influence the search decision. Whereas recent papers have required or

assumed fixed thresholds for each race of drivers, I allow the thresholds to be random. This

permits a richer form of bias where the direction and intensity of bias may depend on the

risk of the driver. Biased officers are not restricted to searching all drivers of one race with

a given level of risk, while searching none of the equally risky drivers of another race, as

implied by a fixed threshold. Instead, biased officers can search both groups of drivers at

different intensities, e.g., whites with 10% risk are searched 20% of the time, and equally

risky minorities are searched 40% of the time. Officers can also change direction of bias

depending on the level of risk, e.g., whites with 10% risk are half as likely to be searched

compared to equally risky minorities, but whites with 20% risk are twice as likely to be

searched compared to equally risky minorities. I show how the dependence between bias

and risk may be partially identified despite how risk is unobserved and cannot be credibly

estimated.

Testing for bias entails testing whether the sharp identified set for the distributions of

officer thresholds (i.e., the smallest set of distributions consistent with the model and data)

includes an equivalent pair of distributions for white and minority drivers. If not, then

the officer’s thresholds must differ by race, implying he is biased. The intensity of bias

may be inferred from how dissimilar the distributions of thresholds are across race. This

new approach utilizes bilinear programs (BPs), which resemble linear programs but also

include bilinear terms (i.e., the product of two distinct variables in the BP). The bilinear

terms imply a non-convex optimization problem, yet BPs can be solved to provable global

optimality. Restrictions on the model can be layered in a transparent manner as constraints

to the program. BPs are not only novel in the context of discrimination, but also in the
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context of partial identification and econometrics in general.

Identifying the distributions of officer thresholds is aided by an instrumental variable (IV).

The intuition for identification is similar to how an IV is used in demand estimation, where

the instrument shifts supply without shifting demand, generating a sequence of equilibria

tracing out the demand curve. In my setting, the instrument shifts the distribution of risk

among drivers stopped without shifting the officer’s threshold. For each race of drivers,

this generates a sequence of data points that must be consistent with a single distribution

of thresholds, thereby constraining what the distribution can be. Since the risk of drivers

stopped can be varied for each officer separately, the proposed methods can be applied

to each officer separately. This permits unrestricted heterogeneity across officers in their

distributions of thresholds and risk. The proposed methods may also be applied without an

instrument, although this implies a weaker test for bias and wider bounds on the intensity

of bias.

My identification strategy differs from the approach popularized by Arnold et al. (2018),

which relies on instruments that shift the thresholds of decision makers while ensuring all

decision makers face the same distribution of risk (e.g., random assignment of judges to

defendants). In the context of police traffic searches, such instruments are difficult to find

because officers select their own distributions of risk by selecting whom to stop. Changing an

officer’s thresholds—whether the threshold pertains to stopping or searching drivers—may

affect who is stopped, which in turn affects the distribution of risk the officer faces. Moreover,

different officers patrol different precincts and shifts, which naturally leads to differences in

the types of drivers officers interact with.

The proposed methods are not specific to police traffic searches, and extend to settings

where Becker’s (1957; 1993) outcome test may be applied. More generally, the methods

provide a way to partially identify treatment effects on latent thresholds in binary choice

models when there is sample selection. The treatment can be discrete, and parametric

assumptions on the random threshold are not required.

I apply the proposed methods on a panel data set tracking officers in the Metropolitan

Nashville Police Department (MNPD) between 2010 and 2019. Due to the computational

demands of the methods, I restrict my attention to the 50 officers with the most number of

searches. On average, these officers have made over 2,100 stops and 250 searches for each

group of drivers, and account for one third of all searches in the data. I use the time and day

of the traffic stop as the instrument, controlling for driver and neighborhood characteristics.

Across two sets of estimates, six officers fail the test at the 5% significance level. For each of

these officers, I estimate bounds on the average intensity of bias, as well as how the intensity

of bias varies with the risk of the driver.

3



The paper proceeds as follows. Section 2 reviews the literature on testing for racial bias;

Section 3 presents the model of an individual officer’s search decision; Section 4 formalizes

how bias may be detected and measured; Section 5 discusses the application; and Section 6

concludes.

2 Literature review

It is well documented that Black civilians are more likely to be stopped, searched, and killed

by police officers compared to white civilians (Gelman et al., 2007; Pierson et al., 2020).1

However, it is challenging to determine the extent to which these disparities stem from racial

bias. This is because researchers have limited information on civilians, officers, and their

interactions. In this section, I summarize earlier approaches to detecting racial bias in spite

of these limitations.

Knowles et al. (2001) lay the foundation for detecting racial bias in traffic searches by

operationalizing the outcome test proposed by Becker (1957, 1993). Officers are modeled

as being homogeneous and only search drivers whose risk of carrying contraband exceeds a

threshold.2 Bias is defined as a racial disparity in thresholds. The researcher’s objective is

thus to recover the thresholds for black and white drivers.

If risk is observed by the researcher and continuously distributed over the unit interval,

then the thresholds are identified from the risk of the white and minority drivers at the margin

of search. However, risk is unobserved. To recover the threshold, Knowles et al. (2001) use

an equilibrium model where heterogeneous drivers decide whether to carry contraband in

response to the probability they are searched. In equilibrium, drivers carry contraband

with probability equal to a fixed threshold they face given their race.3 This results in a

straightforward test for bias: if officers have different success (“hit”) rates conditional on

searching white and minority drivers, then officers are biased. In addition to providing

testable implications for racial bias, equilibrium models allow officers to coordinate and are

able to incorporate constraints officers may face in their frequencies of traffic stops and

searches.4

Anwar and Fang (2006) propose an alternative test that allows for heterogeneity in officer

1See also the Fatal Force database by the Washington Post.
2Persico and Todd (2006) generalize the model to allow heterogeneity across officers.
3The argument is that drivers who are more likely to carry contraband will be searched more frequently.

These drivers are therefore discouraged from carrying contraband. In equilibrium, all drivers of the same
race carry contraband with equal probability and officers search each race at random.

4See Persico (2002) for an equilibrium model where officers are constrained in the volume of traffic
searches they can conduct. See Persico and Todd (2006) for a discussion of how unbiased officers may adjust
their search decisions to compensate for the actions of biased officers.
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decisions and driver risk. By extending the model of Knowles et al. (2001) to allow different

officers to have different thresholds, Anwar and Fang (2006) test for bias using pairwise

comparisons of search decisions across groups of officers (e.g., white officers versus black

officers). If both groups of officers are unbiased, then the ranking of their search rates

should be the same regardless of the race of the driver. While this approach can detect bias,

it cannot determine which group of officers is biased, nor which group of drivers is being

discriminated against.

More recently, Arnold et al. (2018) made an important contribution to the literature by

using random assignment of defendants to judges as an instrument to detect racial bias in

bail decisions. The authors extend the model of Anwar and Fang (2006) by allowing thresh-

olds to be distributed continuously across decision makers. Under restrictions formalized by

Canay et al. (2023),5 the thresholds of all decision makers can be point identified using the

marginal treatment effect framework of Heckman and Vytlacil (2005). These restrictions

include decision makers facing identical distributions of risk (hence the importance of ran-

dom assignment) and modeling decision makers using the Extended Roy Model (i.e., fixed

thresholds). This method is referred to as the marginal outcome test.

To determine whether the marginal outcome test extends to the context of police traffic

searches, Gelbach (2021) tests three implications of the marginal outcome test framework

on police traffic data from Florida and Texas.6 The implications are not satisfied and the

author points to different distributions of risk across officers as a potential reason. Such

differences can arise if officers are not randomly assigned to drivers or vary in their ability to

assess the risk of drivers. Papers using the marginal outcome test to study bias in policing

therefore require restrictions on the distributions of risk. For example, Marx (2022) requires

the distributions of risk to be common across officers. Feigenberg and Miller (2022) allow

the distributions of risk to vary across officers, but rule out sample selection on unobserv-

ables.7 In the structural component of their paper, Arnold et al. (2022) also allow decision

makers to face different distributions of risk, but require parametric assumptions on the joint

distribution of thresholds and risk.8

Other papers have used statistical approaches to test whether civilian race has an effect

5See Canay et al. (2020a,b), Arnold et al. (2020), and Hull (2021) for a discussion on the restrictions.
6Frandsen et al. (2023) propose a test for the exclusion and monotonicity assumptions when using random

assignment of judges as instruments. However, their setting is such that outcomes are not censored, whereas
outcomes are censored in Arnold et al. (2018) and in police traffic searches (defendants who are not released
cannot commit pretrial misconduct, and drivers who are not searched cannot be reported as possessing
contraband).

7The difference-in-differences strategy used by Goncalves and Mello (2021) to study racial bias among
officers writing speeding tickets also rules out sample selection on unobservables.

8See also Simoiu et al. (2017), Pierson et al. (2018), Pierson et al. (2020), and Chan et al. (2022), who
impose similar parametric restrictions to identify thresholds of decision makers.
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on police decisions, including stop-and-frisk and use of force (Ridgeway, 2006; Grogger and

Ridgeway, 2006; Gelman et al., 2007; Ridgeway and MacDonald, 2009; Goel et al., 2016a,b;

Fryer Jr, 2019; MacDonald and Fagan, 2019; Knox et al., 2020a; Gaebler et al., 2022). These

papers either assume that the distribution of risk may be balanced across races, or cannot

attribute the effect of race to racial bias. Knox et al. (2020a) is noteworthy for emphasizing

the difficulty of identifying the effect of race on post-stop decisions alone (e.g., use of force,

traffic searches) due to sample selection.9

3 Model

In this section I model the search decision of a single officer (he) for drivers who are stopped

(she).10 Since officers can be analyzed individually, I suppress the officer index for brevity.

Similar to Knowles et al. (2001) and Anwar and Fang (2006), I also suppress the notation

indicating the analysis is conditional on drivers who are stopped.

3.1 Setup and notation

For each stop i, the officer observes the driver’s race Ri ∈ {w,m} (white or minority), and a

set of non-race characteristics Vi ∈ V that may include the driver’s demeanor, the direction

of travel, and any other details the officer notices. Components of Vi may be observed by

the officer prior to the stop. Some components of Vi may also be observable to one officer

but not another, which allows different officers to form different assessments of the driver’s

risk. The econometrician only observes Ri but not Vi; any other characteristics of the driver

and the stop observed by the econometrician are implicitly conditioned on throughout.

The driver may or may not carry contraband (e.g., drugs, weapons), denoted by Guilty i ∈
{0, 1}. The officer does not know whether the driver is guilty unless he performs a traffic

search, denoted by Searchi ∈ {0, 1}. At the end of each traffic stop, the officer reports in the

data whether a search was conducted and whether there was a “hit,” i.e., contraband was

found,

Hit i ≡ Search i ×Guilty i.

9The authors show that, under a principal strata framework, identifying the effect of race on post-
stop decisions is only possible in the knife-edge scenario where the biases from sample selection and omitted
variables cancel each other out. See Knox et al. (2020b) and Gaebler et al. (2020, 2022) for further discussion.

10If officers work in pairs, then the search decision corresponds to a pair of officers, and pairs of officers
are assumed to be fixed across stops.
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I assume that the officer finds contraband if and only if he searches a guilty driver, as in

Knowles et al. (2001) and Anwar and Fang (2006).

Drivers are drawn from a distribution that depends on the setting of the stop, Zi ∈ Z. For

example, Zi may be the hour and day of the stop, and the interpretation of this assumption

is that different types of drivers are stopped at different times. This may be because the

composition of drivers on the road changes with time, or because the officer’s stop decision

changes with time.11 The setting is observed by both the officer and econometrician and will

play the role of an instrument.

The officer’s search decision may be written as

Search i ≡ 1 {G(Ri, Zi, Vi) ≥ Ti} , (1)

where

G(r, z, v) ≡ P{Guilty i = 1 | Ri = r, Zi = z, Vi = v}

is the probability that the driver caries contraband, which I refer to as the “risk” of the

driver; and Ti is a random threshold that may be interpreted as the officer’s perceived cost

of searching a driver. As discussed below, this model is a relaxation of the Extended Roy

Model proposed by Canay et al. (2023) as I allow Ti to be random even after conditioning on

all characteristics of the driver observable to the officer (see Appendix A.1 for the derivation of

the model).12 This allows the model to reflect how an officer’s threshold may vary for reasons

other than the driver (e.g., the officer may receive idiosyncratic shocks to his motivation,

risk aversion, and perceptiveness across traffic stops). This also permits a richer notion of

bias where the intensity and direction of bias can vary with the risk of the driver.

To derive a logically valid test for bias, I assume the following.

Assumption 1.

(i) Ti | Ri = r is identically distributed across stops i for r ∈ {w,m}.

(ii) Ti ⊥⊥ (Guilty i, Zi, Vi) | Ri = r for r ∈ {w,m}.

(iii) Zi ̸⊥⊥ Vi | Ri = r for r ∈ {w,m}.
11If there are variables that inform the officer’s stop decision and are visible for some values of Zi but not

others, then the distribution of drivers stopped will vary with Zi even if the composition of drivers on the
road do not. This type of variation is used in the Veil of Darkness test by Grogger and Ridgeway (2006) to
test whether race affects the stop decision.

12Ti can be written as Ti = t(Ri) + εi, where t(·) is a deterministic function and εi is a shock that may
depend on race. The standard model with constant thresholds corresponds to the case where εi = 0.
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Assumption 1(i) allows me to pool observations within driver race to infer an officer’s

thresholds. Assumption 1(ii) states that, conditional on driver race Ri, the officer’s threshold

is jointly independent of the guilt of the driver Guilty i, the setting Zi, and the unobserved

(to the econometrician) driver characteristics, Vi. Assumption 1(iii) states that, conditional

on Ri, the instrument Zi may be used to shift Vi. Assumptions 1(ii)–(iii) are particularly

important for the methodology and are discussed in greater detail below.

Under (1) and Assumption 1, the probability that a driver is searched is

P{Search i = 1 | Ri = r, Zi = z, Vi = v}

= P{G(Ri, Zi, Vi) ≥ Ti | Ri = r, Zi = z, Vi = v}

= P{G(r, z, v) ≥ Ti | Ri = r, Zi = z, Vi = v}

= P{G(r, z, v) ≥ Ti | Ri = r}

= FT |R(G(r, z, v) | r),

where the third equality follows from Assumption 1(ii), and FT |R denotes the CDF of Ti

conditional on Ri. The probability a driver is searched is equal to the probability the officer’s

threshold falls below the driver’s risk.13 This leads to the following definition of bias.

Definition 1.

(i) The officer is racially biased if FT |R(· | w) ̸= FT |R(· | m).

(ii) The officer is racially biased at risk g ∈ [0, 1] if

β(g) ≡ FT |R(g | m)− FT |R(g | w) ̸= 0,

where β(g) measues the intensity of bias at risk g. If β(g) > 0 (β(g) < 0), then the

officer is biased against minority (white) drivers with risk g.

Definition 1 is similar to the definition of racial τ -bias proposed by Canay et al. (2023).

However, since β(g) can vary with g and change sign, the intensity and direction of bias can

vary with the risk of the driver, allowing for a more nuanced analysis of bias. This feature of

the model arises from the random threshold and distinguishes my model from earlier models

13An “essentialist” perspective of race views race as a fixed set of characteristics determined by ancestry.
A “constructivist” perspective of race views race as a social categorization, and the race perceived by the
officer is a function of the physical and contextual features of the driver (Rose, 2023). This poses new
challenges to measuring racial bias as a change in race necessarily coincides with changes in other driver
characteristics. Conditioning the analyses on these race-related characteristics may therefore mask the effect
of race. Similar to Arnold et al. (2018), the methods I present are valid even under a constructivist framework
since traffic searches are only warranted based on the risk of the driver (“unobserved dimension reduction”).
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where, conditional on race and risk, an officer searches all drivers or none at all.14 I show in

Section 4 how sharp bounds on β(·) may be derived.

3.2 Discussion

In the remainder of this section, I discuss Assumptions 1(ii)-1(iii) in greater detail, and the

potential challenges to satisfying these two assumptions. I also discuss how to select an

instrument, and how the methods extend to other settings.

3.2.1 Exogeneity assumption

There are three independence conditions in Assumption 1(ii): (i) Ti ⊥⊥ Guilty i | Ri; (ii)

Ti ⊥⊥ Zi | Ri; (iii) Ti ⊥⊥ Vi | Ri. The first condition simply restricts the officer to infer

the probability a driver carries contraband using only details he observes during the traffic

stop—Ri, Vi, and Zi—and not from his thresholds. The second condition relates to the

instrument, so I postpone its discussion to the next section dedicated to the instrument.

I focus my discussion here on the third independence condition, which ensures that Vi

influences the search decision exclusively through the risk of the driver and not through

the threshold. This is similar to how an Extended Roy Model permits only one side of the

model to depend on variables unobserved by the econometrician. As discussed by Canay

et al. (2023), without such an assumption, it is impossible to distinguish between differences

in Vi across races from differences in the distribution of Ti across races, with the latter

difference being racial bias.15

How well Ti ⊥⊥ Vi | Ri is supported depends on the interpretation of Ti and the richness

of the data. As shown in Appendix A.1, the threshold can be decomposed as

Ti = Bi + Ci +Mi,

where Bi reflects the officer’s taste for searching drivers, Ci reflects other considerations made

by the officer (e.g., safety),16 and Mi reflects the error in assessing a driver’s risk. Supporting

the condition Ti ⊥⊥ Vi | Ri amounts to supporting the condition (Bi, Ci,Mi) ⊥⊥ Vi | Ri.
17 One

approach to achieving this is to simplify the interpretation of Ti by assuming away some of

14Fixed thresholds can be implemented in my framework by imposing integrality constraints on the
distribution of officer thresholds.

15Canay et al. (2023) primarily focus their discussion on the marginal outcome test of Arnold et al. (2018).
The random threshold precludes the use of the marginal outcome test as a means to test for bias since there
is no longer a single value of risk associated with a driver at the margin of search for each race.

16Kleinberg et al. (2018) refer to this as omitted payoff bias.
17It is possible that (Bi, Ci,Mi) ̸⊥⊥ Vi | Ri, yet Ti ⊥⊥ Vi | Ri. I ignore such edge cases.
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its components. For example, Knowles et al. (2001), Anwar and Fang (2006), and Persico

(2009) assume Mi = 0, although such an assumption may be difficult to justify. Another

approach is to restrict the channels through which Vi and Ti depend on each other, and then

condition the analysis on an appropriate set of covariates to break the dependence. The

success of this approach depends on the credibility of the restrictions and the richness of the

data. I employ the second approach in the application.

For instance, suppose officers observe a driver’s criminal history and derive greater utility

from searching drivers with criminal histories compared to drivers without one. This will be

reflected in different distributions of Bi for drivers with and without criminal histories. If a

driver’s criminal history is not observed by the econometrician, then it becomes a component

of Vi and Assumption 1(ii) is violated. This invalidates the test since racial disparities in

the distribution of Ti may potentially be explained by racial disparities in criminal histories

rather than bias. This issue may be addressed by conditioning the analyses on drivers’

criminal histories, as in Feigenberg and Miller (2022), as well as other factors that may

influence an officer’s search preference (e.g., non-race driver demographics).

Officers may also consider factors besides their taste for searching vehicles. These factors

are captured by Ci. For example, officers may consider the opportunity cost to searching a

vehicle, such as the time spent on other police calls. A potential concern is that minority

drivers are more likely to be stopped in areas with greater need of policing compared to white

drivers. This leads to a higher opportunity cost of searching minority drivers, creating racial

disparities in Ci and Ti. The disparity in Ti therefore cannot be interpreted as bias, as the

disparity may instead be driven by differences in demands for policing. To avoid this issue,

the analysis should condition on variables correlated with Ri and Ci, such as the volume of

calls for police services. Otherwise, these variables enter into Vi, violating Assumption 1(ii)

and invalidating the test.

Finally, officers may make errors when assessing the risk of the driver. These errors are

represented by Mi. Separating Mi from the other components in Ti is difficult and may

require direct measures of officer beliefs (Bohren et al., 2019, 2023).18 If measurement error

exists but is assumed to be idiosyncratic, then the proposed methods remain valid, although

any bias detected cannot be interpreted as being taste-based. But if officers are assumed

to be better at inferring the risk of drivers who are nervous as opposed to calm, and the

demeanor of the driver is contained in Vi, thenMi ̸⊥⊥ Vi | Ri, again violating Assumption 1(ii)

and invalidating the test.

Satisfying Ti ⊥⊥ Vi | Ri can therefore be a challenge. These challenges are not specific to

18Alternatively, one can assume that Bi and Ci are fixed conditional on race, and E[Mi | Ri = r] = 0 for
r ∈ {w,m}. All variation in Ti therefore stems from Mi.
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my methodology or setting, but extend to earlier methods and other settings where there

may be multiple determinants to the decision maker’s threshold. Supporting Assumption 1

thus requires careful economic reasoning and sufficiently rich data.

3.2.2 Choosing instrumental variables

In an ideal experimental setting, the distribution of an officer’s threshold can be identified

by exposing him to drivers with various levels of risk, and then measuring the probability

of searches conditional on race and risk.19 Bias may then be tested for and measured by

comparing the distributions of thresholds across race. The IV attempts to replicate this

experiment by varying the risk of the drivers without varying the thresholds. This requires

the instrument satisfy a relevance condition, Zi ̸⊥⊥ Vi | Ri, and an exogeneity condition,

Ti ⊥⊥ Zi | Ri. Since risk is never observed by the econometrician and the guilt status of

drivers is only revealed for those who are searched, the distribution of thresholds can only

be partially identified. In Section 4, I show an example where the proposed methods are

able to detect bias even without an instrument, although the methods are strengthened by

having one.

The intuition behind the partial identification result is similar to that of using an IV

to identify a demand curve, where the instrument exclusively shifts the supply curve to

trace out the demand curve. In my setting, Zi exclusively shifts the distribution of risk

through shifting Vi, generating a sequence of search and hit rates that constrain what the

distribution of Ti can be for each race. This identification argument neither restricts how

Vi varies across race, nor how G(Ri, Zi, Vi) depends on Vi for either race. Identification

is then attainable regardless of how differently G(Ri, Vi, Zi) is distributed for each race of

drivers, and is robust to sample selection in traffic stops and statistical discrimination.20

The identification argument also does not restrict how Ti or Vi varies across officers. This is

because the variation in G(Ri, Zi, Vi) through Zi within officer provides information on the

individual officer’s thresholds. This paper thus offers a new test for bias in settings where

decision makers are either exogenously or endogenously exposed to different distributions of

individuals, and does so by providing a method to analyze each decision maker separately.

There are two approaches to selecting an instrument. The first is to consider variables

19Assuming that Ti ⊥⊥ (Vi,Guilty i) | Ri, as in Assumption 1(ii).
20Regressing outcomes on race dummies and covariates is not a valid approach to test for racial bias.

This is because such tests implicitly require the econometrician to balance Gi across races, which may not
be possible. For instance, if Vi is distributed differently across races, then Gi is distributed differently across
races and the regression suffers from omitted variable bias. This can arise from sample selection, where
officers stop different types of white and minority drivers. If Gi depends on Vi differently across races,
then Gi is again distributed differently across races and the regression conflates taste-based and statistical
discrimination (in the sense of Aigner and Cain (1977)).
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that are related to risk but independent of the threshold. An example of such a variable is

traffic diversions, which disrupt the usual flow of traffic and force drivers to take routes they

usually would not. This can change the composition of drivers in a police precinct, thereby

changing the distribution of risk faced by officers of that precinct. If the traffic diversion

stems from a road closure or traffic accident, then it may be reasonable to assume that Ti

and its components are unaffected by the diversion. While data on certain forms of traffic

diversions are available (e.g., road closures), the variation in risk they generate may be too

small to effectively detect racial bias in police traffic searches. For this reason, I do not use

traffic diversions as the instrument in the application.

The second approach to finding an instrument—which I employ in the application—is to

consider variables that are related to risk but only indirectly related to the threshold. For

instance, suppose Ti depends on Zi only through a random vector Wi. If Wi is observed by

the econometrician, then the dependence between Ti and Zi can be broken by conditioning

on Wi. In the application, I model Wi to be factors related to safety and choose Zi to be the

time and day of the stop. I assume that an officer’s thresholds vary with Zi to the extent

that his safety varies with the time and day of a stop. Then conditional on these factors,

the officer is equally willing to search drivers across different times and days.

As with conventional instruments, the primary challenge of choosing an IV is arguing

that Zi satisfies the exogeneity condition, that being Zi ⊥⊥ Ti | Ri. For instance, in the first

example above where traffic diversions are used as an instrument, not all traffic diversions

will be suitable instruments. Traffic diversions caused by a police investigation or a crime

likely encourage officers to search more frequently. Such kinds of traffic diversions should

then be excluded as instruments.

The second approach to choosing an instrument faces the same challenge. For instance,

let Zi again be the time and day of stop. There may be a concern that Zi is endogenous

since officers may prefer working morning shifts on weekdays over night shifts on weekends,

or certain officers are assigned to certain shifts based on their willingness to search. While

this may induce a correlation between Zi and Ti across officers, the proposed methods

remain valid as long as an individual officer’s threshold is independent of Zi since officers are

evaluated separately. I assume this to be the case in the application. However, if individual

officers prefer to search more during the night than during the day, and white and minority

motorists drive at different times, then the test may conflate racial bias with the changes in

thresholds driven by Zi.

Another challenge with this second approach to choosing an IV is that Wi must include

all factors underlying the correlation between Zi and Ti, and Wi must be observed. For

instance, if Wi includes the fatigue of the officer, a variable that may vary by time and day
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but is never reported in the data, then it will be impossible to condition on Wi. In such

cases, the test may conflate changes in thresholds associated with Wi with racial bias.

3.2.3 Other applications

The proposed methods are not specific to police traffic searches and extend to other settings

where an outcome test is appropriate. This may include parole release (Mechoulan and

Sahuguet, 2015), pretrial detention (Arnold et al., 2018, 2022), mortgage approvals (Dobbie

et al., 2021), and the labor market (Becker, 1957). More generally, the methodology is a way

to nonparametrically identify treatment effects on the thresholds in models similar to (1),

with the treatment being the driver’s race in my application. Treatments are not restricted

to be binary and can be discrete. The latent index compared against the threshold need not

be a probability and can be generalized to an expectation, as in Dobbie et al. (2021).21

4 Detecting and measuring racial bias

In line with Becker (1957, 1993), the test I propose tests whether an officer’s search decisions

are consistent with him being unbiased. If they are not, then the officer is deemed biased.

4.1 Defining the test

For each traffic stop, I observe the driver’s race, Ri; the setting of the stop, Zi (e.g., time

and day); the search decision, Search i; and whether contraband is found, Hit i. From these

variables, I construct the officer’s search and hit rates for race r ∈ {w,m} and setting z ∈ Z,

P{Searchi = 1 | Ri = r, Zi = z} =

∫
V
FT |R(G(r, z, v) | r) dFV |R,Z(v | r, z), (2)

P{Hit i = 1 | Ri = r, Zi = z} =

∫
V
G(r, z, v) FT |R(G(r, z, v) | r) dFV |R,Z(v | r, z). (3)

21MacLeod et al. (2017) study how college reputation affects labor market outcomes. The proposed meth-
ods may be applied to answer this question. For example, consider a firm that hires workers whose expected
productivity exceeds a threshold, but may be biased towards applicants from high-ranked universities. That
is, the threshold for applicants may vary depending on the ranking of their alma mater. The proposed
methodology may be used to separate the value of a university’s ranking from the university’s contribution
to its students’ productivity and test whether productivity thresholds depend on the ranking of an appli-
cant’s university. A potential instrument for such an application are the demographics of an applicant’s
parents, which are known to affect children’s adult outcomes (Heckman and Mosso, 2014). Such information
likely correlates with an applicant’s productivity, but may be unknown to the firm and therefore may not
affect a firm’s thresholds.
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These equations follow from the law of iterated expectations and Assumption 1.22 The

conditional hit rate is the probability that contraband is found conditional on a traffic search

and is equal to the ratio of (3) and (2),

P{Guilty i = 1 | Search i = 1, Ri = r, Zi = z} =
P{

Hiti︷ ︸︸ ︷
Search i ×Guilty i = 1 | Ri = r, Zi = z}

P{Search i = 1 | Ri = r, Zi = z}
.

The instrument Zi varies the search and hit rates by varying the distributions of risk.

To define the identified set of the model, let F denote the space of distributions of

(Vi, Ti,Guilty i) | Ri, Zi satisfying Assumption 1. The sharp identified set is

{F ∈ F : (2) and (3) are satisfied for all (r, z) ∈ {w,m} × Z} .

However, in testing for racial bias, the parameters of interest are only FT |R(· | w) and

FT |R(· | m). So I consider a projection of the identified set when testing for bias.

To define this projection, let

Gi ≡ G(Ri, Zi, Vi),

σ(·; r) ≡ FT |R(· | r),

whereGi denotes the risk in stop i, and σ(g; r) denotes the probability a driver with risk g and

race r is searched. The function σ(·; r) represents the distribution of the officer’s threshold

for race r and is the parameter of interest. Denote the distribution of risk conditional on

race and setting by

FG|R,Z(g | r, z) ≡
∫
V
1{G(r, z, v) ≤ g} dFV |R,Z(v | r, z).

Equations (2)–(3) may then be written as

P{Search i = 1 | Ri = r, Zi = z} =

∫ 1

0

σ(g; r) dFG|R,Z(g | r, z), (4)

P{Hit i = 1 | Ri = r, Zi = z} =

∫ 1

0

g σ(g; r) dFG|R,Z(g | r, z). (5)

Let Σ denote the space of non-decreasing, right-continuous functions with domain and

codomain equal to [0, 1]; and let FG denote the space of distributions for scalar random

variables with support [0, 1]. Then the sharp identified set for the distribution of the officer’s

22See Appendix A.2 for the full derivation.
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threshold is

Σ† ≡

{
(σ(·;w), σ(·;m)) ∈ Σ× Σ :

∃FG|R,Z(· | r, z) ∈ FG s.t. (4) and (5) are

satisfied for all (r, z) ∈ {w,m} × Z

}
. (6)

A testable implication for racial bias immediately follows from (6) (see Canay et al., 2013).

Corollary 1. Define Σ⋆ ≡ {σ ∈ Σ : (σ, σ) ∈ Σ†}. Under (1) and Assumption 1, if the

officer is unbiased, then Σ⋆ is non-empty.

Proof. Corollary 1 follows immediately from Definition 1.

A test built around Corollary 1 will be conservative since Σ⋆ may be non-empty even

when the officer is biased. Nevertheless, since Σ† is sharp, Corollary 1 is the strongest testable

implication of the model for unbiasedness.

4.2 Intuition

To build intuition for the test, consider a simple setting where risk is equal to 0, 0.5, or 1.

The left panel of Figure 1 shows a distribution of thresholds, with each square indicating

the probability that the officer searches a driver with a given level of risk. The right panel

shows the data that can be generated by the random threshold. The horizontal position

of each square in the right panel is equal to the search probability σ(g; r) for some risk g;

and the vertical position is equal to the joint probability of searching the driver and finding

contraband, gσ(g; r).

Equations (4)–(5) imply that the search and hit rates must lie in the convex hull of

the three squares in the right panel, indicated by the purple region. Since the observed

search and hit rates for both groups of drivers—represented by the crosses—indeed lie in the

purple region, it is possible that both data points are generated by the same distribution

of thresholds and it cannot be ruled out that the officer is unbiased. The colored numbers

on the left panel indicate possible distributions of risk that generate the crosses of the same

color.

Figure 2 presents the case where only the red cross lies in the convex hull generated

by the distribution in the left panel. This implies that the blue cross is generated by a

different distribution. Corollary 1 states that if the officer is unbiased, then there must

exist a distribution of thresholds that generates a purple region in the right panel containing

both data points, as in Figure 1. If no such distribution exists, then the data for white and

minority drivers must be generated by distinct distributions of thresholds and the officer

must be biased.
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Figure 1: How search and hit rates are generated

(a) Threshold distribution
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Note: The squares in each figure represent the officer’s random threshold. Data that are consistent with the
officer’s threshold must lie inside the purple region in the right panel. The colored crosses in the right panel
represent the observed search and hit rates. Since the data points lie inside the purple region, it is possible
that they are generated by the distribution of thresholds shown in the left panel. The colored numbers in
the left panel indicate possible distributions of risk generating the data points of the same color.

Figure 2: How search and hit rates are informative of thresholds

(a) Threshold distribution
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(b) Data inconsistent with threshold distribution
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Note: The red data point is consistent with the random threshold shown, whereas the blue data point is
not. If the officer is unbiased, there must exist a different distribution of thresholds that generates a purple
region in the right panel containing both data points. If no such distribution exists, then the officer must
have distinct distributions for white and minority drivers.
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Figure 3: How search and hit rates are informative of bias

(a) Distinct threshold distributions
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(b) Data only consistent with bias

0.0

0.5

1.0

0.0 0.5 1.0

Search rate

H
it
ra
te

White Minority Data Threshold

Note: Since it is impossible to find a single distribution of thresholds generating the data for both white and
minority drivers, the officer must be biased. Any pair of thresholds required to generate the data for both
groups of drivers implies an intensity of bias at each level of risk. By exploring the space of distributions
of thresholds consistent with the data, I am able to derive bounds on various measures of bias (e.g., bias
conditional on risk, bias averaged over risk).

Figure 3 presents the case where no single distribution of thresholds can generate the

data for both groups of drivers. Racial bias is therefore detected. Note that bias is detected

even though there is only one data point for each race of drivers, which corresponds to the

case of having no instrument. If an instrument were available, there would be multiple data

points for each race of drivers. This strengthens the test by making it more difficult to find

a single distribution of thresholds capable of generating all the data points.

Beyond testing whether an officer is biased, my framework also allows me to obtain

bounds on the intensity of bias. The left panel of Figure 3 shows two distinct distributions

of thresholds that could have generated the data in the right panel, as well as the implied

intensity of bias at each level of risk. By considering different distributions of thresholds and

risks that are consistent with the data, I derive bounds on various measures of bias.

4.3 Implementation

Corollary 1 may be implemented as a bilinear programming (BP) problem. Despite being

non-convex, bilinear programs can be solved to provable global optimality by commercial

solvers.23 For simplicity, suppose that Gi is discrete and supp (Gi) = {g1, . . . , gK} for finite

23Bilinear programs are solved to global optimality using a branch-and-bound algorithm. The domain
space is partitioned, and convex McCormick relaxations of the original problem are solved across the parti-
tions. See McCormick (1976), Mehlhorn et al. (2008), and Gurobi Optimization, Inc. (2021).
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K. Then (4)–(5) become

P{Search i = 1 | Ri = r, Zi = z} =
K∑
k=1

σ(gk; r) pr,z(gk)︸ ︷︷ ︸
Bilinear terms

, (7)

P{Hit i = 1 | Ri = r, Zi = z} =
K∑
k=1

gk σ(gk; r) pr,z(gk)︸ ︷︷ ︸
Bilinear terms

, (8)

where

pr,z(g) ≡ P{Gi = g | Ri = r, Zi = z}

denotes the distribution of risk conditional on the race of the driver and setting of the

stop. Online Appendix B discusses how B-splines may be used to model the distributions of

thresholds and risk if Gi is continuously distributed.

To specify the BP problem, I introduce the following notation.

mS
r,z ≡ P{Search i = 1 | Ri = r, Zi = z}

mH
r,z ≡ P{Hit i = 1 | Ri = r, Zi = z}

g ≡ (g1, . . . , gK)
′

σσσr ≡ (σ(g1; r), . . . , σ(gK ; r))
′

pr,z ≡ (pr,z(g1), . . . , pr,z(gK))
′

The probabilities mS
r,z, m

H
r,z are the search and hit rates for each race r and setting z and

are identified from the data. The vector g is the support of Gi, which I assume is known

to the researcher. The unknown parameters of the BP problem are {σσσr}r∈{w,m}, which are

the values of σ(·; r) ∈ Σ evaluated at each point of g; and {pr,z}(r,z)∈{w,m}×Z , which are the

distributions of risk conditional on race and setting. For brevity, I refer to the distributions

of thresholds by {σσσr} and the distributions of risk by {pr,z}.
To ensure these parameters are consistent with the model, I impose two baseline sets

of constraints, both of which are linear in the parameters of the model. The first set of

constraints is

0 ≤ σσσr,k ≤ σσσr,k+1 ≤ 1 for r ∈ {w,m} and k = 1, . . . , K − 1, (9)

where σσσr,k denotes the kth component of σσσr, i.e., σσσr,k = σ(gk; r). This ensures σ(·; r) ∈ Σ.
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The second set of constraints is

pr,z,k ∈ [0, 1] for (r, z) ∈ {w,m} × Z and k = 1, . . . , K, (10)

K∑
k=1

pr,z,k = 1 for (r, z) ∈ {w,m} × Z, (11)

where pr,z,k denotes the k
th component of pr,z. This ensures pr,z ∈ FG for (r, z) ∈ {w,m}×Z.

To simplify the discussion, I assume that supp (Zi | Ri = w) = supp (Zi | Ri = m), but this

assumption is not necessary.

Define the population criterion function as

Q({σσσr}, {pr,z}) ≡
∑
r,z

∣∣Bilinear terms︷ ︸︸ ︷
σσσ′
rpr,z −mS

r,z

∣∣+∑
r,z

∣∣ Bilinear terms︷ ︸︸ ︷
(g ⊙ σσσr)

′pr,z −mH
r,z

∣∣,
where ⊙ denotes the Hadamard (element-wise) product. The criterion function measures

how much (7)–(8) are violated. The following proposition describes how to test for bias in

population using Corollary 1.

Proposition 1. Define Q⋆ as

Q⋆ ≡ min
{σσσr},{pr,z}

Q({σσσr}, {pr,z}) (12)

s.t. σσσw = σσσm, (9), (10), (11).

The officer is biased if Q⋆ > 0.

Proof. The constraint σσσw = σσσm restricts the officer to be unbiased. If Q⋆ > 0, then (7) or

(8) is violated for some (r, z) ∈ {w,m} × Z. Then by Corollary 1, the officer is biased.

The criterion Q⋆ in Proposition 1 is the minimum ℓ1-norm between the moments of the

model and the moments of the data when the officer is restricted to be unbiased. Since the

ℓ1-norm can be reformulated as being linear, the criterion function in (12) is bilinear. Other

norms may be used but may be more computationally demanding.

4.3.1 Adding restrictions

The test can be strengthened by restricting Σ and FG. This is straightforward to do if the

restrictions can be written as linear, bilinear, or quadratic constraints to the BP problem.
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Figure 4: Strengthening the test by restricting {pr,z}

(a) Feasible region without restriction (13)
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Note: The purple region in the left panel shows the possible data points generated by a particular random
threshold when there are no restrictions on the distribution of risk. The purple region in the right panel shows
the possible data points generated by the same random threshold, except the mass of drivers is restricted to
be decreasing as risk increases. Reducing the size of the purple region strengthens the test for racial bias by
making it easier to rule out distributions from Σ⋆.

For example, consider restricting the mass of drivers to be decreasing as risk increases,

pr,z,k ≥ pr,z,k+1 for (r, z) ∈ {w,m} × Z and k = 1, . . . K − 1. (13)

Such an assumption is suitable when the mass of low-risk drivers in population is large

compared to the mass of high-risk drivers. Even if the officer is much more likely to stop high-

risk drivers, the greater volume of low-risk drivers on the road may result in a distribution of

risk (conditional on being stopped) where the mass of drivers decreases as risk increases.24

Figure 4 demonstrates how this restriction strengthens the test. The same distribution

of thresholds is depicted in the left and right panel. However, the range of data that can be

generated by the threshold is reduced when (13) is imposed. In fact, while there exist random

thresholds capable of generating the data for both races when there are no restrictions on

the distributions of risk, it is no longer the case once (13) is imposed.

For more examples of imposing restrictions on the model, see Online Appendix A.

4.4 Determining the direction and intensity of bias

If bias is detected, the next step is to determine how the officer is biased. This can be done

in several ways. Below, I first introduce a general measure of bias and show how it can be

24See Online Appendix A.3 for a numerical example.
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bounded. I then show some restrictions that can be imposed to obtain specific measures of

bias.

4.4.1 Bounding a general measure of bias

The general measure of bias takes the form

θ ≡ ωωω′ (σσσm − σσσw)︸ ︷︷ ︸
β(·)

, (14)

where ωωω = (ωωω1, . . . ,ωωωK)
′ is a vector of weights with ωωωk ∈ [0, 1] for k = 1, . . . , K and∑K

k=1ωωωk = 1. θ is thus a weighted average of the intensity of bias at each level of risk

and ωωω is a counterfactual distribution of risk.25 The choice of ωωω determines the measure of

bias, and the weights can be chosen beforehand or treated as variables in the BP problem.

If θ > 0, then the officer is biased against minorities given ωωω. If θ < 0, then the officer is

biased against whites.

Proposition 2. The sharp bounds on θ are obtained by solving the following BP problem,

θlb, θub ≡ min/max
ωωω,{σσσr},{pr,z}

ωωω′ (σσσm − σσσw) (15)

s.t. Q({σσσr}, {pr,z}) = 0, (9), (10), (11).

Proof. The objective in (15) defines the measure of bias, θ. Since the constraints characterize

the sharp identified set Σ†, the bounds on θ are sharp by construction.

Let Θ denote the identified set for θ. The bounds in Proposition 2 are sharp in the sense

that they are the smallest and largest values of Θ. However, because bilinear programs are

non-convex, Θ need not be the full interval [θlb, θub]. I focus the discussion on the bounds in

Proposition 2, although Θ can be constructed by “inverting” (15), similar to how a confidence

interval can be constructed by inverting a statistical test. See Appendix B for how to fully

recover Θ.

When there are no restrictions on σσσm − σσσw, the officer can be biased against one group

of drivers for a given level of risk and reverse their direction of bias at another level of risk.

If the researcher has a prior on the direction of bias, then a sign restriction on the elements

25Oaxaca (1973), Blinder (1973), and DiNardo et al. (1996) decompose average outcomes into structural
and composition effects. By reweighting the structural effects, the authors are able to construct counterfac-
tuals. θ is constructed in a similar way, where ωωω reweights the effect of race on search rates captured by
σσσm − σσσw. See Fortin et al. (2011) for a summary of decomposition methods in economics.
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of σσσm −σσσw can easily be imposed. For example, bias against white drivers can be ruled out

if every element of σσσm − σσσw is restricted to be non-negative.

4.4.2 Bounding bias conditional on risk

A parameter of interest may be the bias conditional on risk, β(·). The bounds on β(gk) are

obtained by setting

θ = σ(gk;m)− σ(gk;w) = β(gk).

This corresponds to setting ωωω = ek, where ek ∈ RK is the kth standard basis vector. The

researcher can therefore bound the bias at every level of risk. It is possible for 0 ∈ [θlb, θub]

for every level of risk even if the officer fails the test in Proposition 1. This corresponds to

the case where bias is detected, but the direction of bias is undetermined.

4.4.3 Bounding average bias

Another parameter of interest is the average bias under a counterfactual distribution of risk.

A specific distribution of risk can be imposed by setting ωωω equal to that distribution. For

example, the average bias under the counterfactual where risk is uniformly distributed for

both groups of drivers corresponds to the constraint

ωωωk =
1

K
for all k = 1, . . . K.

A more interesting measure of bias is one that uses the actual unobserved distribution of

risk for white or minority drivers. For example, the following constraint sets ωωω equal to the

distribution of risk averaged across settings for white drivers,

ωωωk = P{Gi = gk | Ri = w}

=
∑
z∈Z

P{Gi = gk | Ri = w,Zi = z} P{Zi = z | Ri = w}

=
∑
z∈Z

pw,z,k P{Zi = z | Ri = w}, (16)

where the second equality follows by the law of iterated expectations, and P{Zi = z | Ri = w}
is identified from the data. This choice of ωωω implies that θ = E[β(Gi) | Ri = w], where θ

measures how search rates would change for white drivers if they were treated as minorities.
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4.5 Estimation and inference

In this section, I discuss how these methods can be performed on a sample. Statistical

inference is based on the Re-Sampling (RS) test of Bugni et al. (2015), who propose a

specification test for partially identified models defined by moment inequalities; as well as

Bugni et al. (2017), who propose an inference method for subvectors of partially identified

parameters defined by moment inequalities.

4.5.1 Testing for bias

To adapt the RS test to my setting, I define the following terms. Let m ≡
(mS

r,z,m
H
r,z)

′
(r,z)∈{w,m}×Z denote the vector of search and hit rates for all races and set-

tings. Let D denote a diagonal matrix containing Var [Search i | Ri = r, Zi = z] and

Var [Hit i | Ri = r, Zi = z] for all races and settings. Let m̂ and D̂ denote consistent

estimates of m and D. Let m({σσσr}, {pr,z}) denote the vector of search and hit rates implied

by the model parameters, i.e., the right hand sides of (7)–(8). Finally, define the scaled

sample criterion as

Q̂({σσσr}, {pr,z}) ≡
√
n
∥∥∥D̂−1/2 (m({σσσr}, {pr,z})− m̂)

∥∥∥
1
,

where n is the total number of traffic stops and ∥ · ∥1 denotes the ℓ1-norm.26

To test the null hypothesis that the officer is unbiased, define

Q̂⋆
Unbiased ≡ min

{σσσr},{pr,z}
Q̂({σσσr}, {pr,z})

s.t. σσσw = σσσm, (9), (10), (11),

and

Q̂⋆
Biased ≡ min

{σσσr},{pr,z}
Q̂({σσσr}, {pr,z})

s.t. (9), (10), (11).

26Q̂ is based on the scaled sample criterion proposed by Bugni et al. (2015), which requires a test function.
I use a variant of the Modified Method of Moments test function from Andrews and Guggenberger (2009),
with the ℓ1-norm being used instead of the squared Euclidean norm. This test function satisfies the regularity
conditions in Bugni et al. (2015) (see Andrews and Soares (2010)). In addition, the matrixD does not depend
on the model parameters, although it can in general. D does not depend on the model parameters in my
setting because the model may be defined using moment equalities where the model parameters are separable
from the data (see (7)–(8); see Example 6.1 of Bugni et al. (2015) for another example).
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Then the test statistic

τ̂ ≡ Q̂⋆
Unbiased − Q̂⋆

Biased (17)

compares the fit of the model when the officer is restricted to be unbiased against the fit

without the restriction. A large test statistic suggests the fit of the model is affected by the

restriction of unbiasedness and is evidence against the null hypothesis.

To estimate the distribution of τ̂ under the null hypothesis, I resample the data B times.

The data are resampled at the weekly level to account for possible dependencies over time.

For each resampled dataset, indexed by b = 1, . . . , B, I calculate (17) and denote its value by

τ̂b. Define τ̂Null
b ≡ τ̂b − τ̂ . I reject the null hypothesis at the α significance level if τ̂ exceeds

the 1− α quantile of {τ̂Null
b }.

4.5.2 Estimating the intensity of bias

I estimate the bounds on the bias by solving

θlb, θub ≡ min/max
ωωω,{σσσr},{pr,z}

ωωω′ (σσσm − σσσw)

s.t. Q̂({σσσr}, {pr,z}) ≤ Q̂⋆
Biased, (9), (10), (11).

I construct the confidence interval for the intensity of bias by inverting the test for bias. That

is, I test the specification that the intensity of bias is equal to t ∈ [−1, 1]. If the test does

not reject the specification at the α significance level, then t enters the (1 − α) confidence

interval. See Appendix B for a full description of this procedure.

5 Application

I apply the test to police traffic data from the Metropolitan Nashville Police Department

(MNPD). The data contain records of traffic stops for over 2,200 MNPD officers between

2010 and 2019 and is made available by the Stanford Open Policing Project (Pierson et al.,

2020).

5.1 Data

Each observation in the data represents a traffic stop made by an officer. I observe the

driver’s race, age, sex, state of registration, and an anonymized officer identifier. I observe

the logistical details of the traffic stop, including the time and geocoordinates of the stop; the
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Table 1: Summary of stops, searches, and hits for select 50 officers

Full sample Avg. by officer

White Minority White Minority

Stops 109,023 113,405 2,180 2,268
Searches 12,622 15,732 252 315
Hits 1,831 2,741 37 55

Search rate 0.1158 0.1387 0.1546 0.1884
Uncon. hit rate 0.0168 0.0242 0.0277 0.0297
Con. hit rate 0.1451 0.1742 0.2431 0.2135

Notes: For each officer, the conditional hit rate can be calcu-
lated from the ratio of the unconditional hit rate and search
rate.

reason for the traffic stop; whether a search occurred, and if so, why the search occurred and

whether any contraband was found. I categorize the reason for the stop into three groups:

driving-related reasons, non-driving reasons, and investigative reasons.27 Reasons for traffic

searches include driver consent, probable cause, and plain view of contraband. Although the

data categorize contraband into weapons and drugs, I treat all forms of contraband as being

the same.

I supplement the traffic data with data provided by the MNPD on criminal incidents and

calls for services,28 as well as local measures of racial composition and median household

income from the American Community Survey (ACS). Both the MNPD and ACS supple-

mental data are at the census tract level, and they allow me to control for environmental

factors that potentially correlate with the setting of the stop and the officer’s thresholds.

5.2 Restricting the sample

To study bias in traffic searches, the searches used in the analysis must be discretionary.

Traffic searches motivated by rules or mandates are therefore excluded from the study. This

includes searches that are incidental to an arrest, inventory searches, and searches based on

27Driving-related reasons correspond to how the driver maneuvers her vehicle and how she interacts with
other drivers on the road. They include moving traffic violations, safety violations, and vehicle equipment
violations. Non-driving reasons correspond to reasons unrelated to how the vehicle is driven, and include
seat belt violations, parking violations, registration violations, and issues with child restraints. Investigative
stops are its own category and not an aggregate of other reasons.

28I restrict criminal incidents and calls for services to those related to violent crimes, theft, or drugs, as
these may affect an officer’s decision to search for contraband.
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warrants.29 In total, 72% of the traffic searches in the data are retained.

I restrict my attention to the 50 officers with the largest number of traffic searches. This

is because the methods discussed in Section 4.3 are performed on each officer separately, and

in order to reasonably estimate their search and hit rates, I require each of them to have

made a large number of traffic stops and searches. On average, these officers have made

2,180 stops and 252 searches for white drivers, and 2,268 stops and 315 searches for minority

drivers. Surprisingly, this small fraction of officers make up one third of all the searches in

the data.

Finally, I focus on comparing the officer’s thresholds for searching white drivers against

that of black and Hispanic drivers. “Minority” therefore exclusively refers to black and

Hispanic drivers.

Table 1 summarizes the number of traffic stops, searches, and hits in the restricted sample.

5.3 Control and instrumental variables

I choose Zi to be combinations of the day of the week and the patrol shift. I divide the days

into weekdays and weekends, and patrol shifts are either in the morning (7 a.m. to 3 p.m.),

evening (3 p.m. to 11 p.m.), or night (11 p.m. to 7 a.m.). This generates up to six values

of Zi for each officer. To support the independence condition in Assumption 1, I control for

variables that may be correlated with both Zi and officer thresholds. These control variables

are summarized in Table 2.

The first set of controls consists of observable characteristics of the driver besides race,

which includes age, sex, and state of registration. This set of controls accounts for how

officers may feel differently towards searching certain demographics who may drive during

different times of the day and days of the week.

The second set of controls include the details of the traffic encounter, namely the reason

for the stop and, if a search took place, the reason for the search.30 These variables control

for how certain aspects of the traffic stop (e.g., being stopped for driving-related reasons) or

driver behavior (e.g., having contraband in plain view) might affect an officer’s thresholds

and be correlated with the setting. For example, Makofske (2020) finds that officers in

Louisville, Kentucky arrest 40% of drivers stopped for failing to signal, compared to 1%

29Searches incidental to an arrest occur after a driver has been arrested. Inventory searches are re-
quired whenever a vehicle is impounded by the police. Warrants to search a driver are typically obtained
before the traffic stop, suggesting that warrant-based searches are predetermined and non-discretionary.
Hernández-Murillo and Knowles (2004) propose a methodology to incorporate non-discretionary searches
into the analysis.

30Durlauf and Heckman (2020) raise concerns about the credibility of self-reported police data. While
the concern is valid, there is currently not a good solution.
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Table 2: Summary of control variables

Drivers stopped Drivers searched

White Minority White Minority

Driver characteristics
Male 0.6032 0.6007 0.6613 0.7722
Age 37.28 34.64 32.31 30.49
Out of state 0.0638 0.0330 0.0490 0.0340

Reason for stop
Driving 0.8803 0.8776 0.8668 0.8687
Non-driving 0.1070 0.1065 0.1072 0.1031
Investigation 0.0127 0.0159 0.0260 0.0282

Reason for search
Plain view 0.4978 0.2606
Consent 0.4336 0.5938
Probable Cause 0.0686 0.1456

Location
Highway 0.1228 0.0644 0.0759 0.0495
Precinct 1 0.0763 0.0509 0.0640 0.0521
Precinct 2 0.1190 0.1760 0.0882 0.1920
Precinct 3 0.1042 0.1446 0.0913 0.1377
Precinct 4 0.0395 0.0249 0.0789 0.0381
Precinct 5 0.3618 0.2567 0.2573 0.2227
Precinct 6 0.0400 0.1100 0.0257 0.0774
Precinct 7 0.1366 0.1528 0.1469 0.1540
Precinct 8 0.1225 0.0842 0.2477 0.1260

Census tract demographics
Percent white 0.5901 0.4523 0.6028 0.4580
Median household income 49038 41170 48642 40029
Crime incident rate 0.0256 0.0369 0.0305 0.0400
Calls for MNPD services 0.0207 0.0216 0.0212 0.0227

Notes: Crime and call rates are per capita and are restricted to those per-
taining to violent crimes, theft, or drugs.
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of drivers stopped for any other reason. This suggests that certain stops in Louisville are

pretextual and the reason for stopping a driver can affect an officer’s thresholds. Although

the MNPD data do not show signs of pretextual stops, they show a 10% increase in the

proportion of stops being attributed to driving-related reasons across the evening and night

shifts,31 as well as a 50% increase in searches attributed to contraband being in plain view

across the same pair of shifts. Controlling for these features of the traffic stop reduces the

concern that the test is detecting differences along these dimensions rather than detecting

racial bias.

The final set of controls relates to the environment where the stop takes place. This

includes whether the stop was made on a street or a highway; which police precinct the

stop was made in; the racial composition, household income, and crime rate of the census

tract; and the frequency of calls for MNPD services originating from the census tract. This

accounts for the possible correlation between an officer’s thresholds and Zi induced by his

surroundings. As discussed in Section 3.2.2, such a correlation may arise if officers are more

likely to be in dangerous or high-crime neighborhoods at certain times (e.g., night shifts on

weekends), and officers are more concerned about their safety or face higher opportunity

costs to searching vehicles when in these neighborhoods.32

Some potential concerns with the data are endogenous shift assignments, ticket quotas,

or officers being instructed to search more aggressively during certain times. Regarding

endogenous shift assignments, see the discussion in Section 3.2.2. Regarding the ticket

quotas, Tennessee has explicit laws banning quotas on traffic citations. Although this has

not stopped departments from implementing such quotas, ticket quotas pertain to stop

decisions of officers instead of search decisions.33 As long as ticket quotas do not affect

search thresholds, then the quotas only impact the search decisions through changing the

distribution of risk via sample selection. Regarding the concern that officers are instructed

to search more aggressively during different shifts, there were no such policies during the

time frame of the data I analyze. To the best of my knowledge, such policies were only

implemented beginning in July of 2019.34

31In a study on endogenous driving behavior, Kalinowski et al. (2023) find that minority drivers adjust
their driving behavior during the day, when their race is more visible to the officer.

32Roh and Robinson (2009) find there to be spatial correlation in traffic search decisions even after
controlling for driver characteristics. The authors attribute the correlation to similarities in environmental
variables, such as the racial composition of the neighborhood and the volume of police allocated nearby.
Novak and Chamlin (2012) also find that the police workload (measured via calls for services) and degree of
‘social disorganization’ (e.g., percentage of single parent households, percentage of residents in poverty) are
predictive of officer behavior.

33The mayor of Ridgetop, TN attempted to have the city’s police department enforce a ticket quota to
raise money for the city, only to be turned in by the city’s police chief (Ferrier, 2019). See Tennessee Code
§39-16-516 (2014) for the law banning ticket quotas.

34In July of 2019, the MNPD introduced the Entertainment District Initiative, which assigned 17 addi-
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A limitation of the data worth mentioning is the absence of criminal records for drivers.

Controlling for this information is important if officer thresholds are believed to depend

on past offenses of drivers. Unfortunately, police traffic stop data do not contain such

information. Identifying information of drivers is also typically hidden, making it impossible

to merge in criminal records for drivers. The data set constructed by Feigenberg and Miller

(2022) is unique in its inclusion of driver criminal histories.

5.4 Setting up the BP problem

I discretize the support of risk to be

g = {0, 0.025, 0.05, 0.075︸ ︷︷ ︸
Increments of 0.025

, 0.1, 0.15, 0.20, 0.25︸ ︷︷ ︸
Increments of 0.05

, 0.3, 0.4, 0.5, 0.6︸ ︷︷ ︸
Increments of 0.1

, 0.75, 1}.

I choose g to be finer at lower levels of risk since Table 1 shows that the average conditional

hit rates are between 21% and 24%, which suggests most drivers searched are relatively

low-risk. Table 3 presents the conditional hit rates for each setting after accounting for

controls. The average conditional hit rates remain low, ranging from 5% to 27%. The model

also implies that drivers who are searched represent the riskiest subset of drivers who are

stopped. In conjunction with the low conditional hit rates, this further suggests that most

drivers stopped are low-risk. I incorporate this into the model by imposing the monotonicity

restriction in (13), requiring that pr,z is decreasing as risk increases for all (r, z) ∈ {w,m}×Z.

I do not impose any restrictions on σσσ except that it is non-decreasing in risk (as implied

by Assumption 1) and lies in the unit interval.

The probabilities m̂S
r,z, m̂

H
r,z are estimated using logistic regressions. Since traffic searches

and hits can be rare events for some officers, I use Firth’s logistic regression with intercept-

correction to obtain unbiased estimates of the search and hit rates (Puhr et al., 2017).35

To construct m̂S
r,z, I first regress Search i on setting Zi and controls Xi conditional on race

Ri = r. This provides an estimate of P{Search i = 1 | Ri = r, Zi = z,Xi = x}. I then

tional officers to the Entertainment District on Fridays and Saturdays between 6 p.m. and 4 a.m. to improve
public safety. These officers performed high-visibility patrols on foot, bike, and utility task vehicles, and
would make unannounced visits to local establishments. In February of 2021, the MNPD introduced the
Office of Alternative Policing Strategies to address an increase in violent crime in Nashville. A new shift of
80 officers working between 5:30 p.m. and 3:30 a.m. was added across all precincts to perform high-visibility
patrols to deter and detect violent crimes. See Aaron et al. (2019), Rau (2021), and McDonald (2021).

35Firth’s logistic regression reduces the bias in coefficient estimates in small samples. However, it biases
predicted probabilities towards 0.5. In a simulation study, Puhr et al. (2017) show that the bias in the
predicted probabilities can be corrected by adjusting the intercept term. This adjustment also debiases
predicted probabilities for rare events, and outperforms other methods seeking to debias logistic regressions
in rare events data, including King and Zeng (2001).
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Table 3: Search and conditional hit rates by Zi

White Minority

Day Shift Search Cond. Hit Search Cond. Hit

Weekday Morning 0.0376 0.2617 0.0603 0.2265
Weekday Evening 0.1268 0.1774 0.1528 0.1826
Weekday Night 0.2711 0.1080 0.2381 0.1645

Weekend Morning 0.0372 0.2656 0.1091 0.1272
Weekend Evening 0.1349 0.1044 0.1259 0.1597
Weekend Night 0.2753 0.0562 0.2334 0.1064

Mean 0.1158 0.1958 0.1387 0.1868

Notes: Search and conditional hit rates account for the control vari-
ables. The mean rates for the observed data are calculated by weight-
ing each setting by the proportion of stops in the data made in each
setting, and taking a weighted average of the rates across the settings.

set m̂S
r,z equal to the predicted probabilities averaged over the sample distribution of Xi for

either race of drivers, i.e.,

m̂S
r,z = Ê

[
P̂{Search i | Ri = r, Zi = z,Xi}

∣∣∣ Ri = r′
]
for r′ ∈ {w,m}. (18)

In Section 5.5, I present results for both r′ = w and r′ = m. This approach allows me to

control for Xi such that the estimates are representative of each race.

The hit rates m̂H
r,z are estimated as in (18), except I regress Hit i on Zi and Xi conditional

on each race.

Figure 5 summarizes the variation in search and hit rates generated by Zi within officer.

The figure is obtained by calculating the standard deviations of {m̂S
r,z} and {m̂H

r,z} across

Ri and Zi for each officer, and then presenting the histogram of these standard deviations.

Greater variation in search and hit rates increases the power of the test by making it more

difficult to find a single distribution of thresholds generating the data for both groups of

drivers.36

5.5 Results

When averaging the search and hit rates over Xi | Ri = w, I reject the null hypothesis that

the officer is unbiased at the 5% significance level for four of the 50 officers. In addition, three

36There are three officers with no variation in hit rates as they have never found contraband despite
having searched many drivers. For these officers, the criterion and test exclusively depend on (7).
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Figure 5: Variation in search and hit rates across Zi

(a) Search rate

0.0 0.1 0.2 0.3

Std. dev. of m̂S
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(b) Hit rate
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Std. dev. of m̂H
r,z

Avg. over Xi | Ri = w Avg. over Xi | Ri = m

Note: The left (right) panel shows the distribution of the standard deviation of search (hit) rates
across Ri and Zi. The standard deviation of the search (hit) rates across Ri and Zi is calculated for
each officer, and the histograms show the distribution of those standard deviations. The histograms
in red (blue) correspond to the case where m̂S

r,z and m̂H
r,z are obtained by averaging the fitted search

and hit rates from logistic regressions over the distribution of Xi | Ri = w (Xi | Ri = m).

officers are at the margin of failing the test, i.e., the null hypothesis may only be rejected

for them at the 6% significance level.

When averaging the search and hit rates over Xi | Ri = m, I again reject the null

hypothesis for four officers. Compared to the previous case where search and hit rates were

averaged over Xi | Ri = w, two of these officers also failed the test, and one of these officers

was at the margin of failing.

Correcting for multiple hypothesis testing using the Holm-Bonferroni method, I reject

the null hypothesis for two officers whether averaging search and hit rates over Xi | Ri = w

or Xi | Ri = m. Given the conservative nature of the test and the conservative nature

of the Holm-Bonferroni method, I focus my discussion on the estimates obtained without

correcting for multiple hypothesis testing.

The results suggest that bias may depend on observable characteristics of the driver and

traffic stop, Xi. Table 2 compares the distribution of Xi for white and minority drivers, and

shows that minority drivers are on average younger; are stopped in different precincts; and

are stopped in areas with higher crime rates, lower income, and lower proportion of white

residents. Note, however, that these differences in Xi are balanced across both groups of

drivers when testing for bias, so the test is not conflating differences in Xi across race with

differences in thresholds across race.

To see whether the proposed methods imply a simpler approach to detecting bias, Figure 6
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Figure 6: Racial disparities in search and conditional hit rates by officer

(a) Rates averaged over Xi | Ri = w
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Note: Each point corresponds to an individual officer. Search and hit rates of each officer are
averaged across the different settings, controlling for observed characteristics of the driver. Positive
disparities indicate that minority drivers have higher rates compared to white drivers. Red points
indicate officers for whom the null hypothesis of being unbiased is rejected at the 5% significance
level. Orange points indicate officers for whom the null hypothesis is close to being rejected (re-
jection at the 6% significance level). Grey points indicate the remaining officers for whom the null
hypothesis is not rejected.

shows the racial disparities in search and conditional hit rates for officers who are flagged as

racially biased and those who are not. Positive disparities in search (hit) rates indicate that

minority drivers have higher search (hit) rates compared to whites. The left panel averages

search and hit rates over the distribution of Xi | Ri = w, and the right panel averages the

rates over the distribution of Xi | Ri = m. There is no clear relationship between search

and hit rate disparities and racial bias, as bias may or may not be detected regardless of the

magnitude of the disparities.

Figure 7 presents the data for an officer who passes the test, i.e., bias is not detected. The

circles in the left panel represent the search and hit rates by race and setting, and the size of

the circles indicate the number of stops associated with the setting. The purple region shows

the set of data points that are consistent with the threshold distribution in the right panel.

Since all the data points lie inside the purple region, it is possible for the observed data for

white and minority drivers to be generated by the same random threshold. Applying the

test from Section 4, I cannot reject the null hypothesis that the officer is unbiased at the 5%

significant level.

Figure 8 presents the data for an officer who fails the test, i.e., bias is detected. The

top right panel presents one possible estimate of the officer’s distribution of thresholds.
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Figure 7: Example where bias is not detected

(a) Data
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(b) Example of estimated threshold distributions
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Note: Each dot in the left panel corresponds to the search and hit rates for a particular race and
setting. The size of the dots represents the number of stops the data are associated with. Search
and hit rates are averaged over the distribution of Xi | Ri = w. The purple polygon in the left
panel represents the data that can be generated by the threshold distribution shown in the right
panel.

The bottom panel presents the estimated bounds on the bias, with the gray band showing

the bounds conditional on risk, and the dashed lines showing the bounds on the average

bias. The red (blue) dashed lines indicate the average bias when the distribution of risk

is consistent with that of white (minority) drivers in the data. The estimated bounds on

the bias conditional on risk suggest that this officer searches minority drivers more than

equally risky white drivers when risk falls below 0.3. However, as risk increases, the bounds

on bias decrease to the extent that the direction of bias may switch once risk is sufficiently

large. The top right panel shows two distributions of thresholds consistent with the data,

and the change in direction of bias occurs where the two lines intersect. Minority drivers are

estimated to be searched at least 8.8 percentage points less on average if they were treated

as white drivers, holding their distribution of risk constant. In contrast, white drivers are

estimated to be searched at least 9.9 percentage points more on average if they were treated

as minority drivers, holding their distribution of risk constant. These estimates are large

in magnitude considering this officer searches 4.5% of white drivers and 14.6% of minority

drivers.

Figure 9 presents the data for another officer who fails the test. This officer searches

4.0% of white drivers and 12.8% of minority drivers, and his search rates are relatively

stable across settings. However, this officer has never found contraband on either group of

drivers. This result may be interpreted in a few ways. The first is that the officer has almost
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Figure 8: Example where bias is detected
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(b) Example of estimated threshold distributions
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(c) Estimated bounds on bias
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Note: Search and hit rates are averaged over the distribution of Xi | Ri = w. The red (blue) dashed
lines in the bottom panel indicate the bounds on the average bias when the distribution of risk is
consistent with that of white (minority) drivers.

only stopped zero-risk drivers of either race. The racial disparity in search rates is therefore

unjustified and bias is detected. Furthermore, if the officer is searching only a fraction of

zero-risk drivers from each race, then there is some randomness to the search decision, as

suggested by Feigenberg and Miller (2022). Such behavior is consistent with the random

threshold proposed in (1), but not the fixed thresholds from the earlier literature.37

A second interpretation of this result is that the sample is too small to draw any conclu-

sion. Although all drivers searched in the sample were not found to be guilty, the population

risk may differ across the two groups of drivers, and this difference may justify the disparity

in search rates. Nevertheless, this officer has stopped almost 3,000 white drivers and searched

over 100 of them; and stopped over 3,600 minority drivers and searched over 500 of them.

A third and more pessimistic interpretation of this result is that the model is violated.

37A fixed threshold implies officers search all drivers with a given level of risk or none at all.
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Figure 9: Example of random thresholds
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(b) Estimated bounds on bias
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Note: Search and hit rates are averaged over the distribution of Xi | Ri = w. If white drivers were
treated as minority drivers, holding their risk constant, they would be searched approximately 7.5
percentage points more on average. If minority drivers were treated as white drivers, holding their
risk constant, they would be searched between 7.4 and 7.5 percentage points less on average.

For example, the officer may have been unable to find contraband in all the cases where it

was present, which can be viewed as a violation of Assumption 1(ii).

Figure 10 presents the estimated bounds on the average bias for the officers who fail

the test.38 The left panel corresponds to the estimates where the search and hit rates are

averaged over Xi | Ri = w, and the right panel corresponds to the estimates where the search

and hit rates are averaged over X | Ri = m. The red bounds correspond to the bias being

averaged over the distribution of risk of white drivers and indicate how much more white

drivers would be searched if they were treated as minorities. The blue bounds correspond

to the bias being averaged over the distribution of risk for minority drivers and indicate

how much less minority drivers would be searched if they were treated as whites. The gray

bounds correspond to the 95% confidence interval.

When averaging search and hit rates overXi | Ri = w, the estimates suggest white drivers

would be searched at least 2.4 percentage points more on average (83.1% more relative to the

observed search rate of 2.9%) by the biased officers if the drivers were treated as minorities,

holding their risk constant. In contrast, minority drivers would be searched at least 1.2

percentage points less on average (17.3% less relative to the observed search rate of 6.8%) if

they were treated as whites, holding their risk constant.39

When averaging search and hit rates overXi | Ri = m, the estimates suggest white drivers

38See Online Appendix C for the estimated bias for all the officers who fail the test.
39These estimates are obtained by taking a weighted average of the red or blue lower bounds, with the

weights being equal to the proportion of stops (conditional on race) made by each officer.
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Figure 10: Bounds on average bias E[β(Gi)] for biased officers

(a) Cond. on Xi | Ri = w
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Note: The left (right) panel shows the estimated bounds when search and hit rates are averaged
over the distribution of Xi | Ri = w (Xi | Ri = m). Positive average bias indicates minority drivers
are searched more often than equally risky white drivers on average. Red (blue) bounds indicate
the bias averaged over the distribution of risk for white (minority) drivers in the data. Gray bounds
indicate the 95% confidence interval.

would be searched at least 1.2 percentage points more on average (22.3% more relative to the

observed search rate of 5.2%) by the biased officers if the drivers were treated as minorities,

holding their risk constant. Minority drivers would be searched at most 8.7 percentage points

more on average (99% more relative to the observed search rate of 8.8%) if they were treated

as whites, holding their risk constant. The possible increase in search rates is because the

estimated bounds on the average bias for one officer are [−0.755,−0.149], suggesting he is

biased against white drivers on average.40

For comparison, I also apply the test of Knowles et al. (2001) to these 50 officers. Table 4

presents the hit rates of white and minority drivers who are searched, as well as the p-

values from Pearson χ2 tests of equal hit rates. Under the model of Knowles et al. (2001),

the null hypothesis of equal hit rates corresponds to officers being unbiased. Bold entries

indicate the group of drivers that officers (as a collective) are biased against whenever bias

is detected. Interestingly, officers appear to be biased against white drivers in most cases

where bias is detected. This difference stems from how the test of Knowles et al. (2001)

compares the police department-wide hit rate across white and minority drivers, whereas

the method I propose compares both the search and hit rates in multiple settings across

white and minority drivers for each officer. Because the test of Knowles et al. (2001) is

derived from an equilibrium model, it is not intended to evaluate each officer separately and

40This officer accounts for 15.7% of searches among the biased officers.
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cannot identify which officers are biased.41

6 Conclusion

In this paper, I provide a flexible approach to detect and measure racial bias in police traffic

searches. The proposed methods are valid amid sample selection on unobservables and

statistical discrimination. In addition, by using an IV to vary the risk among drivers stopped,

the methods may be applied to individual officers, allowing for unrestricted heterogeneity

across officers in the distributions of thresholds and risk.

This paper also contributes to the literature from a modeling standpoint, as earlier papers

studying racial bias have either assumed or required models with deterministic thresholds

once conditioning on race, whereas I allow the threshold to be random. This relaxation

permits a richer notion of bias, where the direction and intensity of bias may depend on

the unobserved (to the researcher) risk of the driver. Sharp bounds on these measures

are obtained. Additional restrictions to tighten these bounds or strengthen the test are

straightforward to impose. Implementing these methods involves solving bilinear programs,

which are novel in the literature on discrimination and econometrics in general.

I apply the proposed methods on police traffic data from the Metropolitan Nashville

Police Department and find evidence to suggest 6 of the 50 officers evaluated are biased. For

each of these officers, I am able to estimate bounds on the fraction of searches stemming

from bias. The estimates suggest that the presence and intensity of bias for some officers

vary with the observable characteristics and unobserved risk of the driver.

A natural extension of the paper is to apply these methods to other data sets. These

methods can be applied to standard police traffic data, and the assumptions of the model can

be supported by incorporating local demographic data that are typically public or available

upon request, such as household incomes and crime rates. These methods can also be applied

to study discrimination in different settings along different dimensions, such as testing for

and measuring racial bias in healthcare or gender bias in labor markets.

41A potential way to narrow down which officers are biased is to apply the test to different combinations
of precinct, day, and shift, although there are still many officers operating within each combination.

37



T
ab

le
4:

K
n
ow

le
s
et

al
.
(2
00
1)

te
st

re
su
lt
s

M
al
e
an

d
fe
m
al
e
d
ri
ve
rs

M
al
e
d
ri
ve
rs

F
em

al
e
d
ri
ve
rs

W
h
it
e

M
in
or
it
y

p-
va
lu
e

W
h
it
e

M
in
or
it
y

p-
va
lu
e

W
h
it
e

M
in
or
it
y

p-
va
lu
e

A
ll

0
.1
4
5

0.
17
4

0.
00
0∗

∗∗
0
.1
5
1

0.
17
9

0.
00
0∗

∗∗
0
.1
3
4

0.
15
8

0.
00
5∗

∗∗

P
re
ci
n
ct

1
0.
18
6

0.
19
2

0.
77
9

0.
18
7

0.
17
2

0.
50
5

0
.1
8
0

0.
28
7

0.
03
9∗

∗

P
re
ci
n
ct

2
0.
20
6

0.
21
7

0.
49
5

0.
20
2

0.
21
5

0.
5

0.
21
4

0.
22
4

0.
74

P
re
ci
n
ct

3
0.
18
2

0
.1
4
4

0.
00
8∗

∗∗
0.
17
1

0.
15
0

0.
20
4

0.
21
0

0
.1
1
2

0.
00
1∗

∗∗

P
re
ci
n
ct

4
0
.0
2
2

0.
08
3

0.
00
0∗

∗∗
0
.0
2
2

0.
09
7

0.
00
0∗

∗∗
0
.0
2
2

0.
05
1

0.
06
8∗

P
re
ci
n
ct

5
0.
20
3

0
.1
8
3

0.
05
4∗

0.
20
8

0
.1
8
3

0.
04
6∗

∗
0.
19
3

0.
18
3

0.
61
8

P
re
ci
n
ct

6
0
.1
6
7

0.
23
8

0.
01
5∗

∗
0
.1
6
0

0.
24
0

0.
03
3∗

∗
0.
17
7

0.
23
4

0.
24
9

P
re
ci
n
ct

7
0.
18
3

0
.1
6
1

0.
07
3∗

0.
18
6

0.
17
5

0.
50
3

0.
17
9

0
.1
2
7

0.
01
1∗

∗

P
re
ci
n
ct

8
0
.0
5
3

0.
12
5

0.
00
0∗

∗∗
0
.0
6
4

0.
13
8

0.
00
0∗

∗∗
0
.0
3
5

0.
09
3

0.
00
0∗

∗∗

W
ee
k
d
ay

m
or
n
in
g

0.
26
2

0
.2
2
7

0.
02
4∗

∗
0.
26
7

0
.2
3
2

0.
05
7∗

0.
25
1

0.
20
6

0.
13
5

W
ee
k
d
ay

ev
en
in
g

0.
17
7

0.
18
3

0.
55

0.
18
4

0.
18
5

0.
92
8

0.
16
4

0.
17
4

0.
52
8

W
ee
k
d
ay

n
ig
h
t

0
.1
0
8

0.
16
5

0.
00
0∗

∗∗
0
.1
1
4

0.
17
0

0.
00
0∗

∗∗
0
.0
9
6

0.
14
6

0.
00
0∗

∗∗

W
ee
ke
n
d
m
or
n
in
g

0.
26
6

0
.1
2
7

0.
01
4∗

∗
0.
16
3

0.
15
2

0.
87
3

0.
47
6

0
.0
2
3

0.
00
0∗

∗∗

W
ee
ke
n
d
ev
en
in
g

0
.1
0
4

0.
16
0

0.
00
2∗

∗∗
0
.1
1
0

0.
16
2

0.
01
4∗

∗
0
.0
9
1

0.
15
0

0.
06
3∗

W
ee
ke
n
d
n
ig
h
t

0
.0
5
6

0.
10
6

0.
00
0∗

∗∗
0
.0
5
5

0.
10
9

0.
00
0∗

∗∗
0
.0
5
9

0.
10
0

0.
01
7∗

∗

N
ot
es
:
In

ea
ch

v
er
ti
ca
l
p
an

el
,
th
e
fi
rs
t
tw

o
co
lu
m
n
s
p
re
se
n
t
th
e
h
it

ra
te
s
fo
r
w
h
it
e
an

d
m
in
or
it
y
d
ri
ve
rs

w
h
o
ar
e

se
ar
ch
ed

.
T
h
e
th
ir
d
co
lu
m
n
p
re
se
n
ts

th
e
p
-v
al
u
e
fr
om

a
P
ea
rs
on

χ
2
te
st

fo
r
eq
u
al

h
it

ra
te
s,

co
n
d
it
io
n
al

on
ce
rt
ai
n

ch
a
ra
ct
er
is
ti
cs

o
f
th
e
d
ri
ve
r
an

d
tr
affi

c
st
op

.
B
ol
d
h
it

ra
te
s
in
d
ic
at
e
th
e
gr
ou

p
of

d
ri
ve
rs

w
h
ic
h
offi

ce
rs

ar
e
b
ia
se
d

a
g
ai
n
st
.
∗
10

%
,
∗∗

5%
,
∗∗

∗
1
%

si
gn

ifi
ca
n
ce
.

38



References

Aaron, D., K. Mumford, and B. Reese (2019). New Initiative to Further Enhance

Public Safety in Nashveill’s Entertainment District. Metropolitan Nashville Police

Department Media Release. https://www.nashville.gov/departments/police/news/new-

initiative-further-enhance-public-safety-nashvilles-entertainment (accessed 6/19/2023).

Agan, A. and S. Starr (2018). Ban the Box, Criminal Records, and Racial Discrimination:

A Field Experiment. The Quarterly Journal of Economics 133 (1), 191–235.

Aigner, D. J. and G. G. Cain (1977). Statistical Theories of Discrimination in Labor Markets.

Indutrial and Labor Relations Review 30 (2), 175–187.

Andrews, D. W. and P. Guggenberger (2009). Validity of Subsampling and “Plug-in

Asymptotic” Inference for Parameters Defined by Moment Inequalities. Econometric The-

ory 25 (3), 669–709.

Andrews, D. W. and G. Soares (2010). Inference for Parameters Defined by Moment In-

equalities Using Generalized Moment Selection. Econometrica 78 (1), 119–157.

Anwar, S. and H. Fang (2006). An Alternative Test of Racial Prejudice in Motor Vehicle

Searches: Theory and Evidence. American Economic Review 96 (1), 127–151.

Arnold, D., W. Dobbie, and P. Hull (2022). Measuring Racial Discrimination in Bail Deci-

sions. American Economic Review 112 (9), 2992–3038.

Arnold, D., W. Dobbie, and C. S. Yang (2018). Racial Bias in Bail Decisions. The Quarterly

Journal of Economics 133 (4), 1885–1932.

Arnold, D., W. Dobbie, and C. S. Yang (2020). Comment on Canay, Mogstad, Mountjoy

(2020).

Bartlett, R., A. Morse, R. Stanton, and N. Wallace (2022). Consumer-lending Discrimination

in the FinTech Era. Journal of Financial Economics 143 (1), 30–56.

Becker, G. S. (1957). The Economics of Discrimination. University of Chicago Press.

Becker, G. S. (1993). Nobel lecture: The Economic Way of Looking at Behavior. Journal of

Political Economy 101 (3), 385–409.

Bhutta, N. and A. Hizmo (2021). Do Minorities Pay More for Mortgages? The Review of

Financial Studies 34 (2), 763–789.

39

https://www.nashville.gov/departments/police/news/new-initiative-further-enhance-public-safety-nashvilles-entertainment
https://www.nashville.gov/departments/police/news/new-initiative-further-enhance-public-safety-nashvilles-entertainment


Blinder, A. S. (1973). Wage Discrimination: Reduced Form and Structural Estimates. Jour-

nal of Human Resources , 436–455.

Bohren, J. A., K. Haggag, A. Imas, and D. G. Pope (2023). Inaccurate Statistical Discrimi-

nation: An Identification Problem. Review of Economics and Statistics , 1–45.

Bohren, J. A., A. Imas, and M. Rosenberg (2019). The Dynamics of Discrimination: Theory

and Evidence. American Economic Review 109 (10), 3395–3436.

Bugni, F. A., I. A. Canay, and X. Shi (2015). Specification Tests for Partially Identified

Models Defined by Moment Inequalities. Journal of Econometrics 185 (1), 259–282.

Bugni, F. A., I. A. Canay, and X. Shi (2017). Inference for Subvectors and Other Func-

tions of Partially Identified Parameters in Moment Inequality Models. Quantitative Eco-

nomics 8 (1), 1–38.

Canay, I. A., M. Mogstad, and J. Mountjoy (2020a). On the Use of Outcome Tests for

Detecting Bias in Decision Making. National Bureau of Economic Research Working

Paper No. w28789.

Canay, I. A., M. Mogstad, and J. Mountjoy (2020b). Reply to the Comment of Arnold,

Dobbie, Yang (2020).

Canay, I. A., M. Mogstad, and J. Mountjoy (2023). On the Use of Outcome Tests for

Detecting Bias in Decision Making. Review of Economic Studies .

Canay, I. A., A. Santos, and A. M. Shaikh (2013). On the Testability of Identification in

Some Nonparametric Models with Endogeneity. Econometrica 81 (6), 2535–2559.

Card, D., A. R. Cardoso, and P. Kline (2016). Bargaining, Sorting, and the Gender Wage

Gap: Quantifying the Impact of Firms on the Relative Pay of Women. The Quarterly

journal of economics 131 (2), 633–686.

Chan, D. C., M. Gentzkow, and C. Yu (2022). Selection with Variation in Diagnostic Skill:

Evidence from Radiologists. The Quarterly Journal of Economics 137 (2), 729–783.

De Boor, C. (2001). A Practical Guide to Splines, Revised Edition, Volume 27. Springer-

Verlag New York.

DiNardo, J., N. M. Fortin, and T. Lemieux (1996). Labor Market Institutions and the

Distribution of Wages, 1973-1992: A Semiparametric Approach. Econometrica: Journal

of the Econometric Society , 1001–1044.

40



Dobbie, W., A. Liberman, D. Paravisini, and V. Pathania (2021). Measuring Bias in Con-

sumer Lending. The Review of Economic Studies 88 (6), 2799–2832.

Ductor, L., S. Goyal, and A. Prummer (2021). Gender and Collaboration. The Review of

Economics and Statistics , 1–40.

Durlauf, S. N. and J. J. Heckman (2020). An Empirical Analysis of Racial Differences in

Police Use of Force: A Comment. Journal of Political Economy 128 (10), 3998–4002.

Feigenberg, B. and C. Miller (2022). Would Eliminating Racial Disparities in Motor Vehicle

Searches Have Efficiency Costs? The Quarterly Journal of Economics 137 (1), 49–113.

Ferrier, D. (2019). Ferrier Files: Ridgetop Disbands Police Department After Illegal Ticket

Quotas Exposed. Fox 17 WZTV . https://fox17.com/news/local/ferrier-files-ridgetop-

disbands-police-department-after-illegal-ticket-quotas-exposed (accessed 6/19/2023).

Fortin, N., T. Lemieux, and S. Firpo (2011). Decomposition Methods in Economics. In

Handbook of Labor Economics, Volume 4, pp. 1–102. Elsevier.

Frandsen, B., L. Lefgren, and E. Leslie (2023). Judging Judge Fixed Effects. American

Economic Review 113 (1), 253–77.

Fryer Jr, R. G. (2019). An Empirical Analysis of Racial Differences in Police Use of Force.

Journal of Political Economy 127 (3), 1210–1261.

Gaebler, J., W. Cai, G. Basse, R. Shroff, S. Goel, and J. Hill (2020). Deconstructing

Claims of Post-treatment Bias in Observational Studies of Discrimination. arXiv preprint

arXiv:2006.12460 .

Gaebler, J., W. Cai, G. Basse, R. Shroff, S. Goel, and J. Hill (2022). A Causal Framework

for Observational Studies of Discrimination. Statistics and public policy 9 (1), 26–48.

Gelbach, J. B. (2021). Testing Economic Models of Discrimination in Criminal Justice.

Social Science Research Network No. 3784953.

Gelman, A., J. Fagan, and A. Kiss (2007). An Analysis of the New York City Police De-

partment’s “Stop-and-frisk” Policy in the Context of Claims of Racial Bias. Journal of

the American Statistical Association 102 (479), 813–823.

Goel, S., J. M. Rao, and R. Shroff (2016a). Personalized Risk Assessments in the Criminal

Justice System. American Economic Review 106 (5), 119–23.

41

https://fox17.com/news/local/ferrier-files-ridgetop-disbands-police-department-after-illegal-ticket-quotas-exposed
https://fox17.com/news/local/ferrier-files-ridgetop-disbands-police-department-after-illegal-ticket-quotas-exposed


Goel, S., J. M. Rao, and R. Shroff (2016b). Precinct or Prejudice? Understanding Racial Dis-

parities in New York City’s Stop-and-Frisk Policy. The Annals of Applied Statistics 10 (1),

365–394.

Goncalves, F. and S. Mello (2021). A Few Bad Apples? Racial Bias in Policing. American

Economic Review 111 (5), 1406–1441.

Grogger, J. and G. Ridgeway (2006). Testing for Racial Profiling in Traffic Stops from Behind

a Veil of Darkness. Journal of the American Statistical Association 101 (475), 878–887.

Gurobi Optimization, Inc. (2021). Gurobi Optimizer Reference Manual.

Heckman, J. J. and S. Mosso (2014). The Economics of Human Development and Social

Mobility. Annu. Rev. Econ. 6 (1), 689–733.

Heckman, J. J. and E. Vytlacil (2005). Structural Equations, Treatment Effects, and Econo-

metric Policy Evaluation. Econometrica 73 (3), 669–738.

Hernández-Murillo, R. and J. Knowles (2004). Racial Profiling or Racist Policing? Bounds

Tests in Aggregate Data. International Economic Review 45 (3), 959–989.

Hull, P. (2021). What Marginal Outcome Tests Can Tell Us About Racially Biased Decision-

Making. National Bureau of Economic Research Working Paper No. w28503.

Kalinowski, J. J., M. B. Ross, and S. L. Ross (2023). Endogenous Driving Behavior in Tests

of Racial Profiling. Journal of Human Resources .

King, G. and L. Zeng (2001). Logistic Regression in Rare Events Data. Political analy-

sis 9 (2), 137–163.

Kleinberg, J., H. Lakkaraju, J. Leskovec, J. Ludwig, and S. Mullainathan (2018). Human

Decisions and Machine Predictions. The Quarterly Journal of Economics 133 (1), 237–293.

Kline, P., E. K. Rose, and C. R. Walters (2022). Systemic Discrimination Among Large US

Employers. The Quarterly Journal of Economics 137 (4), 1963–2036.

Knowles, J., N. Persico, and P. Todd (2001). Racial Bias in Motor Vehicle Searches: Theory

and Evidence. Journal of Political Economy 109 (1), 203–229.

Knox, D., W. Lowe, and J. Mummolo (2020a). Administrative Records mask Racially Biased

Policing. American Political Science Review 114 (3), 619–637.

42



Knox, D., W. Lowe, and J. Mummolo (2020b). Can Racial Bias in Policing Be Credibly

Estimated Using Data Contaminated by Post-Treatment Selection? Available at SSRN

3940802 .

MacDonald, J. M. and J. Fagan (2019). Using Shifts in Deployment and Operations to Test

for Racial Bias in Police Stops. In AEA Papers and Proceedings, Volume 109, pp. 148–51.

MacLeod, W. B., E. Riehl, J. E. Saavedra, and M. Urquiola (2017). The Big Sort: College

Reputation and Labor Market Outcomes. American Economic Journal: Applied Eco-

nomics 9 (3), 223–261.

Makofske, M. (2020). Pretextual Traffic Stops and Racial Disparities in their Use. Working

Paper .

Marx, P. (2022). An Absolute Test of Racial Prejudice. The Journal of Law, Economics,

and Organization 38 (1), 42–91.

McCormick, G. P. (1976). Computability of Global Solutions to Factorable Nonconvex

Programs: Part I—Convex Underestimating Problems. Mathematical programming 10 (1),

147–175.

McDonald, H. (2021). Special Report: MNPD Puts 60 Extra Officers in

Nashville’s Entertainment District on Weekends. Why? News Channel 5

Nashville. https://www.newschannel5.com/news/special-report-mnpd-puts-60-extra-

officers-in-nashvilles-entertainment-district-on-weekends-why (accessed 6/19/2023).

Mechoulan, S. and N. Sahuguet (2015). Assessing Racial Disparities in Parole Release. The

Journal of Legal Studies 44 (1), 39–74.

Mehlhorn, K., P. Sanders, and P. Sanders (2008). Algorithms and Data Structures: The

Basic Toolbox, Volume 55. Springer.

Mørken, K. (1991). Some Identities for Products and Degree Raising of Splines. Constructive

Approximation 7, 195–208.

Novak, K. J. and M. B. Chamlin (2012). Racial Threat, Suspicion, and Police Behavior: The

Impact of Race and Place in Traffic Enforcement. Crime & Delinquency 58 (2), 275–300.

Oaxaca, R. (1973). Male-Female Wage Differentials in Urban Labor Markets. International

Economic Review , 693–709.

43

https://www.newschannel5.com/news/special-report-mnpd-puts-60-extra-officers-in-nashvilles-entertainment-district-on-weekends-why
https://www.newschannel5.com/news/special-report-mnpd-puts-60-extra-officers-in-nashvilles-entertainment-district-on-weekends-why


Obermeyer, Z., B. Powers, C. Vogeli, and S. Mullainathan (2019). Dissecting Racial Bias in

an Algorithm Used to Manage the Health of Populations. Science 366 (6464), 447–453.

Onuchic, P. and D. Ray (2023). Signaling and Discrimination in Collaborative Projects.

American Economic Review 113 (1), 210–52.

Persico, N. (2002). Racial Profiling, Fairness, and Effectiveness of Policing. American Eco-

nomic Review 92 (5), 1472–1497.

Persico, N. (2009). Racial Profiling? Detecting Bias Using Statistical Evidence. Annu. Rev.

Econ. 1 (1), 229–254.

Persico, N. and P. Todd (2006). Generalising the Hit Rates Test for Racial Bias in Law

Enforcement, with an Application to Vehicle Searches in Wichita. The Economic Jour-

nal 116 (515), F351–F367.

Pierson, E., S. Corbett-Davies, and S. Goel (2018). Fast Threshold Tests for Detecting

Discrimination. In International Conference on Artificial Intelligence and Statistics, pp.

96–105.

Pierson, E., C. Simoiu, J. Overgoor, S. Corbett-Davies, D. Jenson, A. Shoemaker, V. Ra-

machandran, P. Barghouty, C. Phillips, R. Shroff, et al. (2020). A Large-scale Analy-

sis of Racial Disparities in Police Stops Across the United States. Nature Human Be-

haviour 4 (7), 736–745.

Puhr, R., G. Heinze, M. Nold, L. Lusa, and A. Geroldinger (2017). Firth’s Logistic Re-

gression with Rare Events: Accurate Effect Estimates and Predictions? Statistics in

medicine 36 (14), 2302–2317.

Rau, N. (2021). In Nashville, Mayor Cooper, Chief Drake Announce Polic-

ing Reforms to Address Murders, Gun Crimes. Tennessee Lookout .

https://tennesseelookout.com/2021/02/01/in-nashville-mayor-cooper-chief-drake-

announce-policing-reforms-to-address-murders-gun-crimes/ (accessed 6/19/2023).

Ridgeway, G. (2006). Assessing the Effect of Race Bias in Post-Traffic Stop Outcomes Using

Propensity Scores. Journal of Quantitative Criminology 22 (1), 1–29.

Ridgeway, G. and J. M. MacDonald (2009). Doubly Robust Internal Benchmarking and

False Discovery Rates for Detecting Racial Bias in Police Stops. Journal of the American

Statistical Association 104 (486), 661–668.

44

https://tennesseelookout.com/2021/02/01/in-nashville-mayor-cooper-chief-drake-announce-policing-reforms-to-address-murders-gun-crimes/
https://tennesseelookout.com/2021/02/01/in-nashville-mayor-cooper-chief-drake-announce-policing-reforms-to-address-murders-gun-crimes/


Roh, S. and M. Robinson (2009). A Geographic Approach to Racial Profiling: The Micro-

analysis and Macroanalysis of Racial Disparity in Traffic Stops. Police Quarterly 12 (2),

137–169.

Rose, E. K. (2023). A Constructivist Perspective on Empirical Discrimination Research.

Journal of Economic Literature 61 (3), 906–923.
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Appendix

A Derivations

A.1 Deriving the random threshold in (1)

My model is an extension of the model by Canay et al. (2023). Let Ysi ∈ {0, 1} denote the

potential outcome of whether contraband is found on driver i when Search i = s.42 I assume

that contraband is found if and only if the driver is carrying contraband and searched, which

implies Guilty i = Y1i − Y0i. Let Ri ∈ {w,m} denote the race of the driver, Vi denote

the characteristics of the driver observed by the officer and not the econometrician, and

Zi denote the instrument. Variables observed by both the officer and econometrician are

implicitly conditioned on and I suppress their notation for brevity.

Let B̃i denote the officer’s taste for searching driver i. Let C̃i denote the cost of searching

driver i, which represents other considerations besides bias. To allow for measurement error

in the risk assessment, let Y ⋆
si ∈ {0, 1} denote the potential outcome the officer considers

when making his decision, which can differ from the true Ysi. The officer solves the following

problem when deciding whether to search driver i,

max
s∈{0,1}

E
[
Y ⋆
si + s(B̃i − C̃i) | Ri = r, Zi = z, Vi = v

]
+ Usi,

where E [· | Ri = r, Zi = z, Vi = v] denotes the officer’s subjective conditional expectation;

and Usi = s(B̌i − Či) + M̌si is a sum of random shocks to search tastes (B̌i), search costs

(Či), and error in risk assessment (M̌si). The solution to the above problem is

Search i = 1
{
E [Y ⋆

1i − Y ⋆
0i | Ri = r, Zi = z, Vi = v] ≥ Bi(r, z, v) + Ci(r, z, v)− (M̌1i − M̌0i)

}
,

where

Bi(r, z, v) = −
(
E [B̃i | Ri = r, Zi = z, Vi = v] + B̌i

)
,

Ci(r, z, v) = E [C̃i | Ri = r, Zi = z, Vi = v] + Či

To collect the effect of measurement error into a single term, define

m(r, z, v) = E[Y1i − Y0i | Ri = r, Zi = z, Vi = v]− E [Y ⋆
1i − Y ⋆

0i | Ri = r, Zi = z, Vi = v]

42The methods extend to the case where Ysi is continuous.
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to be the deviation between the true risk of the driver and the officer’s risk assessment,

conditional on Ri, Zi, and Vi. The officer’s search decision may then be written as

Search i = 1
{
E[Y1i − Y0i | Ri = r, Zi = z, Vi = v]︸ ︷︷ ︸

P{Guiltyi|Ri=r,Zi=z,Vi=v}

≥ Bi(r, z, v) + Ci(r, z, v) +Mi(r, z, v)︸ ︷︷ ︸
Ti|Ri=r,Zi=z,Vi=v

}
,

(A.1)

where

Mi(r, z, v) = m(r, z, v)− (M̌1i − M̌0i).

As in Canay et al. (2023), the threshold in (A.1) includes terms representing search tastes,

search costs, and measurement error in risk. However, by introducing shocks B̌i, Či, M̌i, the

threshold is random even after conditioning on Ri, Zi, and Vi. This allows the direction and

intensity of bias to vary with the risk of the driver.

Assumption 1(ii) is satisfied by imposing the following mean independence assumption

that is analogous to the Extended Roy Model restriction in Canay et al. (2023),

E [B̃i | Ri = r, Zi = z, Vi = v] = E [B̃i | Ri = r],

E [C̃i | Ri = r, Zi = z, Vi = v] = E [C̃i | Ri = r],

m(r, z, v) = m(r),

and assuming the shocks to search tastes, search costs, and measurement error are effectively

idiosyncratic,

(B̌i, Čsi, M̌0i, M̌1i) ⊥⊥ (Guilty i, Zi, Vi).

A.2 Deriving the search and hit rates

The search rate is derived as follows.

E[Search i | Ri = r, Zi = z]

= E[E[Search i | Ri = r, Zi = z, Vi] | Ri = r, Zi = z]

= E[E[1{G(Ri, Zi, Vi) ≥ Ti} | Ri = r, Zi = z, Vi] | Ri = r, Zi = z]

= E[FT |R(G(r, z, Vi) | r) | Ri = r, Zi = z] (A.2)

=

∫
V
FT |R(G(r, z, v) | r) dFV |R,Z(v | r, z),
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where the first equality is by law of iterated expectations; the second equality is by substi-

tuting the definition of Search i; the third equality follows from Ti ⊥⊥ (Zi, Vi) | Ri imposed

by Assumption 1; and the final equality follows by definition of conditional expectations.

The hit rate is derived as follows.

E[Hit i | Ri = r, Zi = z]

= E[E[Hit i | Ri = r, Zi = z, Vi] | Ri = r, Zi = z]

=

∫
V
E[Hit i | Ri = r, Zi = z, Vi = v] dFV |R,Z(v | r, z), (A.3)

where the first equality is by law of iterated expectations; and the second equality is by

definition of conditional expectations. The expectation in the integrand may be written as

E[Hit i | Ri = r, Zi = z, Vi = v]

= E[Search i ×Guilty i | Ri = r, Zi = z, Vi = v]

= E[Guilty i | Search i = 1, Ri = r, Zi = z, Vi = v] E[Search i | Ri = r, Zi = z, Vi = v]

= E[Guilty i | G(r, z, v) > Ti, Ri = r, Zi = z, Vi = v] E[Search i | Ri = r, Zi = z, Vi = v]

= E[Guilty i | Ri = r, Zi = z, Vi = v] E[Search i | Ri = r, Zi = z, Vi = v]

= G(r, z, v) FT |R(G(r, z, v) | r),

where the first equality follows by definition of Hit i; the second equality follows by law of

iterated expectations, and that Search i × Guilty i = 0 when Search i = 0; the third equality

follows from the definition of Search i; the fourth equality follows from Ti ⊥⊥ Guilty i | Ri, Zi, Vi

from Assumption 1; and the final equality follows by definition of G(·, ·, ·), as well as from
(A.2). Substituting this expression for E[Hit i | Ri = r, Zi = z, Vi = v] into (A.3) completes

the derivation of the hit rate.

B Identifying and conducting inference on Θ

B.1 Identifying Θ

The bounds in Proposition 2 are sharp in the sense that they are the smallest and largest

values of Θ. However, because bilinear programs are non-convex, Θ need not be the full

interval derived in Proposition 2. Θ may be recovered by solving the following BP problem
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for t ∈ [−1, 1],

Q⋆
θ(t) ≡ min

ωωω,{σσσr},{pr,z}
Q({σσσr}, {pr,z})

s.t. ωωω′(σσσm − σσσw) = t, (9), (10), (11).

The level of bias t is in Θ if and only if Q⋆
θ(t) = 0.

B.2 Confidence intervals for Θ

The confidence interval for θ may be constructed by inverting the test for racial bias. To

determine whether t ∈ [−1, 1] is in the confidence interval, I first solve

Q̂⋆
θ(t) ≡ min

ωωω,{σσσr},{pr,z}
Q̂({σσσr}, {pr,z})

s.t. ωωω′(σσσm − σσσw) = t, (9), (10), (11).

I then construct the test statistic

τ̂θ(t) = Q̂⋆
θ(t)− Q̂⋆

Bias, (B.4)

which compares the fit of the model when the officer is restricted have bias θ = t against the

fit when the officer is allowed to have any level of bias.

To estimate the distribution of τ̂θ(t) under the null hypothesis that t ∈ Θ, I resample

the data B times. For each resampled dataset, indexed by b = 1, . . . , B, I calculate (B.4)

and denote it by τ̂θ,b(t). Define τ̂Null
θ,b (t) ≡ τ̂θ,b(t) − τ̂θ(t). Then t does not enter the (1 − α)

confidence interval for θ if τ̂ exceeds the 1− α quantile of {τ̂Null
θ,b }.
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