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 OPTIMIZATION-CONSCIOUS ECONOMETRICS‡

Inference for Support Vector Regression under   ℓ 1    Regularization†

By Yuehao Bai, Hung Ho, Guillaume A. Pouliot, and Joshua Shea*

This paper studies inference for support vector 
regression (SVR) with   ℓ 1   -norm regularization 
(  ℓ 1   -SVR). SVR is the extension of the support 
vector machine (SVM) classification method 
(Vapnik 1998) to the regression problem (Basak, 
Pal, and  Patranabis 2007) and is designed to 
reproduce the good  out-of-sample performance 
of SVM classification in the regression setting. 
It has been frequently used in regression anal-
ysis across fields such as geophysical sciences 
(Ghorbani, Zargar, and   Jazayeri-Rad 2016), 
engineering (Li, West, and  Platt 2012), and 
image compression (Jiao et al. 2005).

However, theory and closed-form expressions 
for the asymptotic variance of the regression 
coefficient estimates, or of tests that may be 
inverted for inference, are not available. While 
there is  nonasymptotic methodology for infer-
ence, it is limited to small samples and relies on 
distributional assumptions (Gao et al. 2002; Law 
and Kwok 2001). Because such assumptions are 
typically not satisfied in practice, we find these 
methods impractical.

It has been shown that calculations akin to 
those used to derive asymptotic distributions of 
quantile regression coefficient estimates may be 
used to produce asymptotic approximations of 

conditional (on features) probabilities of classi-
fication for SVM (Pouliot 2018). These deriva-
tions may be extended to produce the asymptotic 
distribution of the regression coefficients in 
SVR, but they rely on a nonparametric estimate 
of the density of the regression errors. Density 
estimation itself requires an arbitrary choice of 
bandwidth parameter and may allow users to 
present deceptively narrow confidence intervals 
whose coverage properties fall well below the 
nominal level. See Figure 1.

This paper addresses these issues and deliv-
ers, to the best of our knowledge, the first der-
ivation of error bars for SVR that does not 
require distributional assumptions and the first 
rigorous treatment of large-sample inference for 
SVR. We further improve on this by developing 
a  bandwidth-free procedure based on the inver-
sion of a novel regression rank score test statistic 
that displays competitive power properties.1

I. Setup and Notation

Let   W i   =  ( Y i  ,  X i  ,  Z i  )  ∈ ℝ ×  ℝ    d x    ×  ℝ    d z    ,  1 ≤ i  
≤ n  be i.i.d.  random vectors. We assume the 
first element of   X i    is 1. Let  P  denote the distri-
bution of   W i   . For a random variable (vector)  A , 
define the vector (matrix)   𝐀 n   =   ( A 1  , … ,  A n  )  ′   . 
Let   Q Y   (x, z)   denote the conditional median of  Y  
given  X = x, Z = z . We assume that this regres-
sion function is linear, that is,

(1)   Q Y   (x, z)  =  x ′  β (P)  +  z ′  γ (P) , 

where  β (P)  ∈  핉    d x     and  γ (P)  ∈  핉    d z     are unknown 
parameters. We omit the dependence of  β  and  γ  
on  P  whenever it is clear from the context.

1 An R package for estimation and inference using   ℓ 1   -SVR 
is available at https://github.com/jkcshea/l1svr. 
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The covariates are   ( X i  ,  Z i  )  . We distinguish   X i    
and   Z i    to make transparent that the covariate   Z i    is 
the one for which we conduct inference.

Consider the following   ℓ 1   -SVR:

(2)    min  
  
 (b,r) ∈

  
 ℝ    d x   × ℝ    d z   

 

    n   −1   ∑ 
1≤i≤n

   max {0,  | Y i   −  X  i  ′  b −  Z  i  ′  r|  − ϵ} 

 +  λ n   ( ∥b∥ 1   +  ∥r∥ 1  ) , 

where

   ∥b∥ 1   =   ∑ 
1≤j≤ d x  

  
 

    |  b j   | 

and similarly for   ∥r∥ 1   .
Define   F Y   (y | x, z)   as the conditional distri-

bution at  Y = y  given  X = x  and  Z = z  and 
  f Y   (y | x, z)   as the corresponding conditional den-
sity. We impose the following conditions on the 
distribution  P .

ASSUMPTION 1: The distribution  P  is such 
that

 (i)  E [ ( 
 X i    X  i  ′    X i    Z  i  ′   
 Z i    X  i  ′ 

  
 Z i    Z  i  ′ 

  )   f Y   ( X  i  ′ β + Z  i  ′  γ − ϵ |  X i  ,  Z i  ) ]  

  is strictly positive and finite.

 (ii)   f Y   (y | x, z)   exists for all   (y, x, z)  ∈ ℝ  
×  ℝ    d x    ×  ℝ    d z    .

 (iii)   f Y   ( ⋅ | x, z)   is symmetric around   x ′  β +  z ′  γ  
for all   (x, z)  ∈  ℝ    d x    ×  ℝ    d z    .

 (iv)   f Y   ( x ′  β +  z ′  γ − ϵ | x, z)  > 0  for all   (x, z)   
∈  ℝ    d x    ×  ℝ    d z    .

 (v) Define

   Γ =   {   (x, z)  ∈  ℝ    d x    ×  ℝ    d z    :  

     y ∈  [ x ′  β +  z ′  γ − c,  x ′  β +  z ′  γ + c]  }  .  

  There exists  c > 0  such that

     sup  
 (x,z) ∈Γ

    
 |   f Y   (y | x, z)  −  f Y   ( x ′  β +  z ′  γ | x, z) |    __________________________  

 | y −  x ′  β −  z ′  γ| 
   < ∞. 

Assumption 1 (i), (ii), and (v) are commonly 
imposed in the quantile regression literature in 
order to establish the asymptotic distributions 
of estimators (Koenker 2005; Bai, Pouliot, 
and  Shaikh 2019). Assumption 1 (iii)–(iv) are 
imposed so that the coefficient estimates from 
the   ℓ 1   -SVR model are consistent for the coeffi-
cients of the linear conditional median regres-
sion function.

For pivotal inference, we will require the fol-
lowing strong but powerful homoskedasticity 
assumption on  P .

ASSUMPTION 2: The distribution  P  is such 
that

 (i)   f Y   ( x ′  β +  z ′  γ − ϵ  | x, z)  = g (ϵ)   for all   
(x, z)  ∈  ℝ    d x    ×  ℝ    d z    , for some function  g .

 (ii)   F Y   ( x ′  β +  z ′  γ − ϵ | x, z)  ≡  p ϵ    across all 
  (x, z)  ∈  ℝ    d x    ×  ℝ    d z    , where the con-
stant   p ϵ    may depend on  ϵ .

Assumption 2 (i) is imposed so that the den-
sity terms cancel in the expression of the limit-
ing variances of the test statistic, thus delivering 
pivotal inference. Assumption 2 (ii) is imposed 
so that the test statistic is simpler but is not 
required in general.

As in Ghorbani, Zargar, and   Jazayeri-Rad 
(2016), we impose the following condi-
tion on the tuning parameter   λ n   . It is satisfied 
when   λ n   = λ / n , where  λ  is a constant.

ASSUMPTION 3:   λ n   → 0  as  n → ∞ .

Figure 1.   ℓ 1   -SVR Regression Rank Score Confidence 
Interval versus Wald Confidence Interval

Notes: Simulated coverage probabilities of the 95 percent 
confidence interval when errors are heteroskedastic and 
Laplacian. These results extend to all other heteroskedastic 
error distributions considered in Table 1.
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Let   𝟏 d    denote the  d × 1  vector of ones. 
The   ℓ 1   -SVR problem (2) has the following pri-
mal linear programming formulation:

(3)  max  𝟏  n  ′   σ 

+  λ n    (   𝟏   d x    ′    b   +  +  𝟏   d x    ′    b   −  +       𝟏   d z    ′    r   +  +  𝟏   d z    ′    r   −  )    ,

 subject to

 u − v =  𝐘 n   −  𝐙 n   r −  𝐗 n   b ,

  σ − s = u + v − ϵ  𝟏 n   ,

   b   + ,  b   − ,  r   + ,  r   − , u, v, σ, s ≥ 0, 

where the optimization is over   b   +  ,   b   −  ,   r   +  ,  
  r   −  ,  u ,  v ,  σ ,  s . See the online Appendix for the 
derivation of (3).

II. Inference

For a prespecified   γ 0   ∈  ℝ    d z    , we are inter-
ested in inverting tests of

(4)   H 0  : γ (P)  =  γ 0   versus  H 1  : γ (P)  ≠  γ 0   

at level  α ∈  (0, 1)  .
For that purpose, consider the following 

“short”   ℓ 1   -SVR problem constructed by replac-
ing   𝐘 n    with   𝐘 n   −  𝐙 n    γ 0    and omitting   𝐙 n    from the 
regressors in (3):

(5)    max  
 b   + , b   − ,u,v,σ,s

    𝟏  n  ′   σ +  λ n   ( 𝟏   d x    ′    b   +  +  𝟏   d x    ′    b   − )  

 subject to

 u − v =  𝐘 n   −  𝐙 n    γ 0   −  𝐗 n   ( b   +  −  b   − )  ,

  σ − s = u + v − ϵ  𝟏 n   ,

   b   + ,  b   − , u, v, σ, s ≥ 0. 

Define    β ˆ   n    as   b   +  −  b   −  , where   b   +   and   b   −   are part 
of the solution to (5). The dual of (5) is

(6)   max  
 a   + , a   − 

      ( 𝐘 n   −  𝐙 n    γ 0  )  ′    a   +  + ϵ  𝟏  n  ′    a   −  

 subject to

 − λ n    𝟏  d x     ≤  𝐗  n  ′    a   +  ≤  λ n    𝟏  d x     ,

   a   −  ≤  a   +  ≤ −  a   −  ,

   a   −  ∈   [− 1, 0]    n . 

Denote the solution to (6) by    a ˆ     +   and    a ˆ     −  .
We construct the   ℓ 1   -SVR regression rank 

score test statistic as

(7)   T n   ( 𝐖 n  ,  γ 0  )  =   
 n   −1/2   𝐙  n  ′     a ˆ     + 

  ______________  
 √ 

___________
   n   −1   𝐙  n  ′    𝐌 n    𝐙 n     p ˆ   n    
  , 

(8)   𝐌 n   = I −  𝐗 n     ( 𝐗  n  ′    𝐗 n  )    −1   𝐗  n  ′  , 

and

(9)    p ˆ   n   =   1 _ n     ∑ 
1≤i≤n

    I {| Y i   −  X  i  ′    β ˆ   n   −  Z  i  ′   γ 0   | ≥ ϵ} . 

We define the   ℓ 1   -SVR regression rank score 
test as

(10)       ϕ n   ( 𝐖 n  ,  γ 0  )  = I {|  T n   ( 𝐖 n  ,  γ 0  )  | >  z 1−  α _ 2    } , 

where   z 1−  α _ 2      is the   (1 − α/2)  th quantile of the 
standard normal distribution.

To see the intuition behind the construction 
of   T n   ( 𝐖 n  ,  γ 0  )  , consider running the SVR of 
 Y −  Z ′    γ 0    on  X , with    a ˆ     +   as the solution to the dual 
problem. If   H 0    holds, that is,  γ (P)  =  γ 0   , then 
regressing  Y −  Z ′    γ 0    on  X  and  Z  should result 
in an estimated coefficient “close” to 0 on  Z . 
Hence, whether or not  Z  is included in the regres-
sion should have “close” to zero effect on the 
primal or dual results. Equivalently, adding the 
constraint   𝐙  n  ′     a ˆ     +  = 0  to (6) should not change 
the solution very much, so that   𝐙  n  ′     a ˆ     +  = 0  holds 
approximately when the null hypothesis holds 
but may be large otherwise.

The following theorem is our main result. It 
establishes the asymptotic distribution of the test 
statistic defined in (7) under the null and guar-
antees asymptotic exactness of the test defined 
in (10).

THEOREM 1: Suppose  P  satisfies Assumption 
1,   λ n    satisfies Assumption 3, and  P  addi-
tionally satisfies the null hypothesis, that is, 
 γ (P)  =  γ 0   . Then,

(11)   n   −1/2   𝐙  n  ′     a ˆ     +   →   d  

 N (0, 2E [  Z ̃   i     Z ̃    i  ′    F Y   ( X  i  ′  β +  Z  i  ′   γ 0   − ϵ |  X i  ,  Z i  ) ] ) , 

where

   Z ̃   i   =  Z i   − E [ Z i    X  i  ′   f Y   ( X  i  ′  β +  Z  i  ′   γ 0   − ϵ|  X i  ,  Z i  ) ]   

 × E  [ X i    X  i  ′   f Y   ( X  i  ′ β +  Z  i  ′   γ 0   − ϵ |  X i  ,  Z i  ) ]    
−1

  X i  . 
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If  P  additionally satisfies Assumption 2, then

   T n   ( 𝐖 n  ,  γ 0  )   →   d   N (0, 1) , 

and therefore, for the problem of testing (4) 
at level  α ∈  (0, 1)  ,   ϕ n   ( W n  )   defined in (10) 
satisfies

    lim  n→∞   E [ ϕ n   ( 𝐖 n  ,  γ 0  ) ]  = α. 

Moreover, the following corollary delivers 
pivotal inference and allows the test to be per-
formed easily.

COROLLARY 1: Suppose  P  satisfies Assump-
tions 1–2 and the null hypothesis and   λ n    satisfies 
Assumption 3. Then the asymptotic variance in 
(11) can be consistently estimated without den-
sity estimation by

    1 _ n    𝐙  n  ′    𝐌 n    𝐙 n     p ˆ   n   ,

where   M n    and    p ˆ   n    are defined in (8) and (9), 
respectively.

According to Theorem 1, we can con-
struct confidence regions by inverting the test 
  ϕ n   ( 𝐖 n  ,  γ 0  )   in (10). The following corollary 
shows that the limiting coverage probability of 
the confidence region is indeed correct.

COROLLARY 2: Let   ϕ n   ( W n  ,  γ 0  )   denote the test 
in (10) with level  α . Define

(12)   C n   =  { γ 0   ∈ ℝ  :   ϕ n   ( 𝐖 n  ,  γ 0  )  = 0} . 

Suppose  P  satisfies Assumptions 1 and 2 and   λ n    
satisfies Assumption 3. Then,

    lim  n→∞   P {γ ∈  C n  }  = 1 − α. 

We show in the online Appendix that the test 
statistic is monotonic, which guarantees the con-
fidence region is an interval.

III. Simulation

This section  presents a simulation study on 
the size, power, and width of the error bars for 
the   ℓ 1   -SVR regression rank score test in finite 
samples. We compare its performance against 
the median regression rank score test, a  natural 

benchmark (Koenker 2005; Bai, Pouliot, 
and Shaikh 2019).

The data-generating process is

  Y = − 0.8 + 2X + γZ +  G   −1  (τ) , 

  (X, Z)  ∼ N ( ( 1  
2
 ) ,  ( 10  4  

4
  

8
 ) ) , 

where   G   −1   is the  inverse CDF for the error,  τ  
is uniformly distributed over the   [0, 1]   interval, 
and   (X, Z)  ⫫ τ . In all simulations, the sample 
size is 500 and we set   λ n   = 0 . The parameter  ϵ  
is adjusted according to the distribution of the 
error so that  G (ϵ)  − G (− ϵ)  = 0.2 . The results 
of the simulation carry over to cases of higher 
dimensional vectors of covariates so long as the 
sample size is sufficiently large.

Table  1 presents the simulation results for 
four distributions of error terms: Gaussian, a 
symmetric mixture of Gaussian distributions, 
Student’s  t , and   χ   2  . The latter three distribu-
tions allow us to measure the performance of 
the test when the error distribution exhibits 
either multiple modes, fat tails, or asymmetry. 
We set the true parameter  γ = 0  under the null 
to study size properties and  γ = 0.5  under the 
alternative to study power properties at crit-
ical level  α = 0.05 . Additional simulations 
and their details may be found in the online 
Appendix.

Rows 1–2 indicate that the size properties 
of the SVR and median regression rank score 
tests are about equal under homoskedasticity, 
but the SVR regression rank score test often 
has better power properties. Rows 3–4 reiterate 
these findings in the case where the errors are 
heteroskedastic. Rows 5–6 likewise show that 
the confidence intervals under homoskedasticity 
obtained through the SVR regression rank score 
test are often narrower than those of the median 
regression rank score test. Additional simula-
tions in the online Appendix yield similar com-
parisons between the two inference methods.

IV. Conclusion

In this article, we developed classical 
large-sample inference and furthermore deliv-
ered methodology producing asymptotically 
valid error bars while circumventing the need 
to select a bandwidth parameter. The asymp-
totic theory developed to establish the validity 



VOL. 111 615INFERENCE FOR SUPPORT VECTOR REGRESSION UNDER   ℓ 1    REGULARIZATION

of the error bars is novel for SVR and may be 
of independent interest. Remarkably, simulation 
evidence suggests that the regression rank score 
test with our proposed regression rank score test 
statistic may outperform the standard median 
regression rank score test in inference for the 
regression parameters of the linear median 
regression function.
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